refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 399 results
Sort by

Filters

Technology

Platform

accession-icon SRP100788
Single cell RNA-seq of 444 epithelial cells from the mammary glands of pubescent and adult mice
  • organism-icon Mus musculus
  • sample-icon 422 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Mammary glands were collected from 8 pubescent (4.7-4.9 week-old) female mice and 8 adult (10 week old) female mice. Freshly sorted epithelial cells were submitted to a Fluidigm C1 System machine for single cell capture and cDNA synthesis. Cells were visualized under the microscope to ensure integrity of the captured single cells prior to cDNA preparation. Libraries were prepared using the Nextera XT kit and sequencing was carried out on an Illumina NextSeq 500 to achieve paired-end 75 bp reads. Overall design: RNA-seq profiling was completed for 221 cells from pubescent mice and 223 cells from adult mice.

Publication Title

Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP100784
Single cell RNA-seq of 346 epithelial cells from the mammary glands of pre-pubescent, pubescent and adult mice
  • organism-icon Mus musculus
  • sample-icon 346 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Mammary glands were collected from pre-pubescent (2 weeks old), pubescent (4.7- 4.9 weeks old) and adult (10 week-old) female mice. Freshly sorted epithelial cells were submitted to a Fluidigm C1 System machine for single cell capture and cDNA synthesis. Cells were visualized under a microscope to ensure integrity of the captured single cells prior to cDNA preparation. Libraries were prepared using the Nextera XT kit and sequencing was carried out on an Illumina Hiseq 2000 to achieve 100 bp paired-end reads. Overall design: RNA-seq profiling was completed for 144 cells from 8 pre-puberty (2 week old) mice, 136 cells from 8 pubescent (4.7-4.9 week old) mice and 66 cells from 8 adult (10 week old) mice.

Publication Title

Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP100792
Single cell RNA-seq of 312 basal epithelial cells from the mammary glands of pregnant and adult mice
  • organism-icon Mus musculus
  • sample-icon 311 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Mammary glands were collected from 8 pregnant (12.5 day) mice and 8 adult (10 week old) female mice. Basal epithelial cells were FACS sorted. Freshly sorted cells were submitted to a Fluidigm C1 System machine for single cell capture and cDNA synthesis. Cells were visualized under the microscope to ensure integrity of the captured single cells prior to cDNA preparation. Libraries were prepared using the Nextera XT kit and sequencing was carried out on an Illumina NextSeq 500 to achieve paired-end 75 bp reads. Overall design: RNA-seq profiling was completed for 75 cells from pregnant mice and 237 cells from adult mice.

Publication Title

Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP100785
Single cell RNA-seq of 278 epithelial cells from the mammary glands of pregnant and non-pregnant mice
  • organism-icon Mus musculus
  • sample-icon 278 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Mammary glands were collected from 8 pregnant (12.5 day) mice and 8 non-pregnant adult (10 week old) female mice. Epithelial cells were FACS sorted from the pregnant mice. Cells from the adult mice were FACS sorted as basal or luminal. Freshly sorted cells were submitted to a Fluidigm C1 System machine for single cell capture and cDNA synthesis. Cells were visualized under the microscope to ensure integrity of the captured single cells prior to cDNA preparation. Libraries were prepared using the Nextera XT kit and sequencing was carried out on an Illumina NextSeq 500 to achieve 75 bp paired-end reads. Overall design: 112 basal cells and 43 luminal cells were profiled from the adult mice. 123 total epithelial cells were profiled from the pregnant mice.

Publication Title

Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP100783
Single cell RNA-seq of 186 basal and luminal epithelial cells from the mammary gland of adult mice
  • organism-icon Mus musculus
  • sample-icon 169 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Mammary glands of 8 adult (10 week-old) female mice were collected. Freshly sorted basal and luminal epithelial cells were submitted to a Fluidigm C1 System machine for single cell capture and cDNA synthesis. Cells were visualized under the microscope to ensure integrity of the captured single cells prior to cDNA preparation. Libraries were prepared using the Nextera XT kit and sequencing was carried out on an Illumina Hiseq 2000 to achieve 100bp paired-end reads. Overall design: 96 basal and 90 luminal cells were profiled from 8 mice.

Publication Title

Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP100782
Single cell RNA-seq of eight thousand epithelium cells from the mammary glands of adult mice
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Epithelial cells were isolated by FACS from the mammary glands of adult (10 week old) female mice. A basal subpopulation of the epithelial cells was also isolated. Freshly sorted cells were submitted to a 10X Genomics Chromium System for single cell capture. cDNA synthesis and library preparation was done according to the protocol supplied by the manufacturer. Sequencing was carried out on an Illumina NextSeq500 sequencer to achieve 75 bp paired-end reads. Overall design: Transcriptional profiling was completed for 4771 basal cells and 3302 total epithelial cells from 8 mice.

Publication Title

Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP158103
RNA-seq profiling of basal and luminal mammary cells from Foxp1-deficient and control mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Long-lived quiescent mammary stem cells (MaSCs) are presumed to coordinate the dramatic expansion of ductal epithelium that occurs through the different phases of postnatal development, but little is known about the molecular regulators that underpin the activation of MaSCs. Here we show that ablation of the transcription factor Foxp1 in the mammary gland profoundly impairs ductal morphogenesis, resulting in a rudimentary tree throughout adult life. Foxp1-deficient glands were highly enriched for quiescent Tspan8hi MaSCs, which failed to become activated, even in competitive transplantation assays, and therefore harbor a cell-intrinsic defect. Luminal cells aberrantly expressed basal genes, suggesting that Foxp1 may also contribute to cell-fate decisions. Notably, Foxp1 was uncovered as a direct repressor of the Tspan8 gene in basal cells and deletion of Tspan8 could rescue the profound defects in ductal morphogenesis elicited by Foxp1 loss. Thus, a single transcriptional regulator, Foxp1, can control the exit of MaSCs from dormancy to orchestrate differentiation and development. Overall design: Basal and luminal epithelial cells were extracted from the mammary glands of floxed Foxp1 control and Foxp1 mammary gland conditional knockout mice. mRNA from three biological replicates of each cell population was profiled by RNA sequencing. All mice were female.

Publication Title

Foxp1 Is Indispensable for Ductal Morphogenesis and Controls the Exit of Mammary Stem Cells from Quiescence.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP163378
RNA-seq expression profiling of individual clones sorted from mouse mammary tumors
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Breast tumors are characterized by inherent heterogeneity but the evolving cellular organization of breast tumors through progression remains poorly understood. Individual clones were tracked by combining mouse models of breast cancer with Confetti reporter strains. Expression profiling of individual clones sorted from tumors arising in K5- and Elf5-driven Pten/p53-deficient mice revealed distinct molecular signatures. Overall design: K5-rtTA-IRES-GFP and ElF5-rtTA-IRES-GFP transgenic mice were crossed with TetO-cre (JAX) and R26R-Confetti reporter strains to generate triple genetically modified mice. The mice were treated with medroxyprogesterone acetate (MPA) and dimethylbenz(a)anthracene (DMBA) to induce carcinogenesis. Three K5-driven and five Elf5-driven mammary tumors were selected. Individual live cells from each tumor were FACS sorted by the four Confetti fluorescent markers (to select individual clones) and by CD24 expression (high or low). Cell subsets for the eight tumors, four fluorescent markers and positive or negative CD24 status were profiled by RNA-seq (38 samples in all). Expression was quantified by counting RNA-seq reads at the gene level and (separately) at the exon level.

Publication Title

Intraclonal Plasticity in Mammary Tumors Revealed through Large-Scale Single-Cell Resolution 3D Imaging.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE63362
Identification of sexually dimorphically expressed genes in rat tissues
  • organism-icon Rattus norvegicus
  • sample-icon 256 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The sexually dimorphic expression of genes across 26 somatic rat tissues was using Affymetrix RAE-230 genechips. We considered probesets to be sexually dimorphically expressed (SDE) if they were measurably expressed above background in at least one sex, there was at least a two-fold difference in expression (dimorphism) between the sexes, and the differences were statistically significant after correcting for false discovery. 14.5% of expressed probesets were SDE in at least one tissue, with higher expression nearly twice as prevalent in males compared to females. Most were SDE in a single tissue. Surprisingly, nearly half of the probesets that were (SDE) in multiple tissues were oppositely sex biased in different tissues, and most SDE probesets were also expressed without sex bias in other tissues. Two genes were widely SDE: Xist (female-only) and Eif2s3y (male-only). The frequency of SDE probesets varied widely between tissues, and was highest in the duodenum (6.2%), whilst less than 0.05% in over half of the surveyed tissues. The occurrence of SDE probesets was not strongly correlated between tissues. Within individual tissues, however, relational networks of SDE genes were identified. In the liver, networks relating to differential metabolism between the sexes were seen. The estrogen receptor was implicated in differential gene expression in the duodenum. To conclude, sexually dimorphic gene expression is common, but highly tissue-dependent. Sexually dimorphic gene expression may provide insights into mechanisms underlying phenotypic sex differences.

Publication Title

The incidence of sexually dimorphic gene expression varies greatly between tissues in the rat.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE31503
Exposure to Nickel, Chromium, or Cadmium Causes Distinct Changes in the Gene Expression Patterns of a Rat Liver Derived Cell Line
  • organism-icon Rattus norvegicus
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Many heavy metals, including nickel (Ni), cadmium (Cd), and chromium (Cr) are toxic industrial chemicals with an exposure risk in both occupational and environmental settings that may cause harmful outcomes. While these substances are known to produce adverse health effects leading to disease or health problems, the detailed mechanisms remain unclear. To elucidate the processes involved in the of toxicity of nickel, cadmium, and chromium at the molecular level and to perform a comparative analysis, H4-II-E-C3 rat liver-derived cell lines were treated with soluble salts of each metal using concentrations derived from viability assays, and gene expression patterns were determined with DNA microarrays.

Publication Title

Exposure to nickel, chromium, or cadmium causes distinct changes in the gene expression patterns of a rat liver derived cell line.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact