refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE47210
Gene expression of murine iDCs isolated from tolerized MOG35-55-infused/MOG35-55-immunized or MOG35-55-immunized mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Recent data from our group, demonstrate that infusion of myelin oligodendrocyte glycoprotein (MOG35-55) peptide, leads to induction of MOG35-55-specific Tregs and subsequent suppression of Experimental Autoimmune Encephalomyelitis (EAE), the mouse model of multiple sclerosis. Amelioration of EAE was accompanied by reduced MOG-specific Th1 and Th17 responses in the draining lymph nodes (dLNs). Phenotypic analysis of the dLNs of MOG-infused mice revealed a significant Treg-mediated reduction in the recruitment of 7AAD-CD3-CD19-CD11c+CD11bhighGr-1+ iDCs compared to non-infused control immunized mice. Focusing on the delineation of novel molecules/genes that are involved in the MOG-specific Treg-mediated suppression of autoimmune responses, we have isolated highly purified iDCs from MOG infused and non-infused control immunized mice.

Publication Title

De novo-induced self-antigen-specific Foxp3+ regulatory T cells impair the accumulation of inflammatory dendritic cells in draining lymph nodes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE22166
Oxidoreductase transcript data from human umbilical vein endothelial cells
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Oxidoreductase enzymes are critical to redox regulation of intracellular proteins within human cells. We used microarrays to identify which oxidreducatse genes are expressed in unstimulated human umbilical vein endothelial cells.

Publication Title

Naturally occurring free thiols within beta 2-glycoprotein I in vivo: nitrosylation, redox modification by endothelial cells, and regulation of oxidative stress-induced cell injury.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32140
The response of PBMCs and primary airway epithelial cells to Influenza and RSV virus
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 99 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE34205
Transcriptional profile of PBMCs in patients with acute RSV or Influenza infection
  • organism-icon Homo sapiens
  • sample-icon 99 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To study the transcriptional profile of patients with acute RSV or Influenza infection,children of median age 2.4 months (range 1.5-8.6) hospitalized with acute RSV and influenza virus infection were offered study enrollment after microbiologic confirmation of the diagnosis. Blood samples were collected from them within 42-72 hours of hospitalization. We excluded children with suspected or proven polymicrobial infections, with underlying chronic medical conditions (i.e congenital heart disease, renal insufficiency), with immunodeficiency, or those who received systemic steroids or other immunomodulatory therapies. The RSV cohort consisted of 51 patients with median age of 2 months (range 1.5-3.9) and the influenza cohort had 28 patients with median age of 5.5 months (range 1.4-21). Control samples were obtained from healthy children undergoing elective surgical procedures or at outpatient clinic visits. To exclude viral co-infections we performed nasopharyngeal viral cultures of all subjects. We recruited 10 control patients for the RSV cohort with median age of 6.7 months (range 5-10), and 12 control patients for the influenza cohort with median age of18.5 months (range 10.5-26).

Publication Title

Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP161569
Global transcriptional profiling unveils the interferon network in blood and tissues across different diseases [RNA-seq_blood4_module_testing]
  • organism-icon Mus musculus
  • sample-icon 94 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

We have performed modular analyses to decipher the global transcriptional response and capture a breadth of distinct immune responses in the lungs and blood of mice infected or challenged with a broad spectrum of infectious pathogens, including parasites (Toxoplasma gondii), bacteria (Burkholderia pseudomallei), viruses (Influenza A virus and Respiratory Syncytial virus (RSV)) and fungi (Candida albicans), or allergens (House dust mite (HDM), systemic and intra-nasal challenge). In a distinct set of infectious diseases, we tested the blood modular transcriptional signatures in mice infected with Plasmodium chabaudi chabaudi (malaria), murine cytomegalovirus (MCMV), Listeria monocytogenes and chronic Burkholderia pseudomallei. We also investigated the transcriptional profiles of sorted CD4 T cells (total CD4+, CD4+ CD44 high and CD4+ CD44 low) from lung and blood samples from mice challenged with HDM allergen. Moreover, we used mice deficient in either Ifnar or Ifngr, or both, to reveal the individual roles of each pathway in controlling disease in mice infected with Toxoplasma gondii. Overall design: RNA-seq analysis of blood samples obtained from mice infected with Plasmodium chabaudi chabaudi, murine cytomegalovirus (MCMV), Listeria monocytogenes and chronic Burkholderia pseudomallei.

Publication Title

Transcriptional profiling unveils type I and II interferon networks in blood and tissues across diseases.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP161563
Global transcriptional profiling unveils the interferon network in blood and tissues across different diseases [RNA-seq_HDM_sorted_CD4_Tcells]
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

We have performed modular analyses to decipher the global transcriptional response and capture a breadth of distinct immune responses in the lungs and blood of mice infected or challenged with a broad spectrum of infectious pathogens, including parasites (Toxoplasma gondii), bacteria (Burkholderia pseudomallei), viruses (Influenza A virus and Respiratory Syncytial virus (RSV)) and fungi (Candida albicans), or allergens (House dust mite (HDM), systemic and intra-nasal challenge). In a distinct set of infectious diseases, we tested the blood modular transcriptional signatures in mice infected with Plasmodium chabaudi chabaudi (malaria), murine cytomegalovirus (MCMV), Listeria monocytogenes and chronic Burkholderia pseudomallei. We also investigated the transcriptional profiles of sorted CD4 T cells (total CD4+, CD4+ CD44 high and CD4+ CD44 low) from lung and blood samples from mice challenged with HDM allergen. Moreover, we used mice deficient in either Ifnar or Ifngr, or both, to reveal the individual roles of each pathway in controlling disease in mice infected with Toxoplasma gondii. Overall design: RNA-seq analysis of sorted CD4 T cells (total CD4+, CD4+CD44high and CD4+CD44low) from lung and blood samples obtained from mice challenged systemically with House dust mite (HDM) allergy.

Publication Title

Transcriptional profiling unveils type I and II interferon networks in blood and tissues across diseases.

Sample Metadata Fields

Specimen part, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact