refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 47 results
Sort by

Filters

Technology

Platform

accession-icon GSE22954
Artificially induced epithelial-mesenchymal transition in surgical subjects: its implications in clinical and basic cancer research
  • organism-icon Homo sapiens
  • sample-icon 144 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Artificially induced epithelial-mesenchymal transition in surgical subjects: its implications in clinical and basic cancer research.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE33103
Overall aiEMT in surgical samples of esophageal cancer patients
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a)

Description

Surgical samples have long been used as important subjects for cancer research. In accordance with an increase of neoadjuvant therapy, biopsy samples have recently become imperative for cancer transcriptome. On the other hand, both biopsy and surgical samples are available for expression profiling for predicting clinical outcome by adjuvant therapy; however, it is still unclear whether surgical sample expression profiles are useful for the prediction by the use of biopsy samples because little has been done about comparative gene expression profiling between the two kinds of samples.

Publication Title

Artificially induced epithelial-mesenchymal transition in surgical subjects: its implications in clinical and basic cancer research.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE32701
Individual aiEMT in surgical samples of esophageal cancer patients
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Surgical samples have long been used as important subjects for cancer research. In accordance with an increase of neoadjuvant therapy, biopsy samples have recently become imperative for cancer transcriptome. On the other hand, both biopsy and surgical samples are available for expression profiling for predicting clinical outcome by adjuvant therapy; however, it is still unclear whether surgical sample expression profiles are useful for the prediction by the use of biopsy samples because little has been done about comparative gene expression profiling between the two kinds of samples.

Publication Title

Artificially induced epithelial-mesenchymal transition in surgical subjects: its implications in clinical and basic cancer research.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE32700
Overall aiEMT in non-cancerous samples of esophageal cancer patients
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a)

Description

Surgical samples have long been used as important subjects for cancer research. In accordance with an increase of neoadjuvant therapy, biopsy samples have recently become imperative for cancer transcriptome. On the other hand, both biopsy and surgical samples are available for expression profiling for predicting clinical outcome by adjuvant therapy; however, it is still unclear whether surgical sample expression profiles are useful for the prediction by the use of biopsy samples because little has been done about comparative gene expression profiling between the two kinds of samples.

Publication Title

Artificially induced epithelial-mesenchymal transition in surgical subjects: its implications in clinical and basic cancer research.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE12474
Microarray analysis of skeletal muscle hypertrophy induced by heat-stress in healthy humans
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This study was aimed at examining the effects of long-term of heat-stress on the gene expression of skeletal muscle hypertrophy. Heat- and stream-generating (HSG) sheets were placed on thigh laterally. The HSG sheets (heat-stress) were applied 8-hrs/day, once a day, 4 days/weeks, for 10 weeks. A muscle biopsy was taken from the vastus lateralis muscle (2 cm depth) of the treated leg before and after the experiment. Oligonucleotide microarray revealed that genes related to ATP-synthesis, protein synthesis and the molecular chaperonic activity were increased by heat stress. These results suggest that heat-stress might be a useful countermeasure for muscular atrophy during aging.

Publication Title

Responses of muscle mass, strength and gene transcripts to long-term heat stress in healthy human subjects.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE58862
Transcriptome response to nitric oxide in Pseudomonas aeruginosa
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

DNA microarray analysis was employed to investigate the transcriptome response to nitric oxide in Pseudomonas aeruginosa. We focused on the role played by the nitric oxide-response regulators DNR and FhpR and an oxygen-response regulator ANR in the response.

Publication Title

Fine-tuned regulation of the dissimilatory nitrite reductase gene by oxygen and nitric oxide in Pseudomonas aeruginosa.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24784
Gene expression profile of pellicle cells of Pseudomonas aeruginosa
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

To investigate the gene expression profile of pellicle cells of Pseudomonas aeruginosa, microarray analysis was performed. Transcriptome profiles of pellicle cells and planktonic cells grown in LB medium were determined by Affymetrix GeneChip. Gene expression pattern that is specific to pellicle cells was evaluated by comparing the data set with that of planktonic cells.

Publication Title

Trade-off between oxygen and iron acquisition in bacterial cells at the air-liquid interface.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP140471
A Zebrafish Acromegaly Model Elevates DNA Damage and Impairs DNA Repair Pathways
  • organism-icon Danio rerio
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Acromegaly is a pathological condition due to excess growth hormone (GH) secretion. Acromegaly patients exhibit a deterioration of health and many associated complications, such as cardiovascular issues, arthritis, kidney diseases, muscular weakness, and colon cancer. Since these complications are generalized throughout the body, we investigated the effect of GH excess on cellular integrity. Here, we established stable acromegaly model zebrafish lines that overexpress tilapia GH and the red fluorescence protein (RFP) reporter gene for tracking GH gene expression throughout generations, and performed RNA-Seq data analysis from different organs. Intriguingly, heatmap and Expression2Kinases (X2K) analysis revealed the enrichment of DNA damage markers in various organs. Moreover, H2A.X immunostaining analysis in acromegaly zebrafish larvae and the adult acromegaly model brain and muscle showed a robust increase in the number of DNA-damaged cells. Using Gene Set Enrichment Analysis (GSEA), we found that the acromegaly zebrafish model had impaired DNA repair pathways in the liver, such as double-strand break (DSB), homologous recombination repair (HRR), non-homologous end joining (NHEJ), nucleotide excision repair (NER), and translesion synthesis (TLS). Interestingly, the impairment of DNA repair was even more prominent in acromegaly model than in aged zebrafish (three years old). Thus, our study demonstrates that affection of cellular integrity is characteristic of acromegaly Overall design: Total mRNA obtained from 1-years old acromegaly zebrafish model muscle, brain, kidney, liver and 3-day old larvae compared to wild-type (WT) zebrafish were generated by deep sequencing using Illumina.

Publication Title

An Acromegaly Disease Zebrafish Model Reveals Decline in Body Stem Cell Number along with Signs of Premature Aging.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE17296
Transcriptome analysis of the roxSR and anr mutant strains of Pseudomonas aeruginosa under aerobic conditions
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

To assess the role of two redox-sensitive transcriptional regulators, RoxSR and ANR, in Pseudomonas aeruginosa under aerobic conditions, microarray analysis was performed. Transcriptome profiles of roxSR mutant and anr mutant aerobically grown in LB medium were determined by Affymetrix GeneChip at both the exponential phase and early stationary phase and compared to that of the wild type strain.

Publication Title

Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32618
Expression data of mouse eSZ and GP cells with or without EWS-FLI1
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Ewings sarcoma is highly malignant bone tumor that involves childhood and adolescent, and its nature has not been well understood. To clarify its cellular origin and the mechanisms of tumorigenesis, we used ex vivo approach to create a murine model for Ewings sarcoma. The osteochondrogenic progenitors derived from the embryonic superficial zone (eSZ, designated as FZ in the data set) of murine long bones at late gestation were purified by microdissection, introduced with EWS-FLI1 or EWS-ERG retroviruses and transplanted into nude mice. Ewings sarcoma-like small round cell sarcoma developed at 100% penetrance, whereas tumor induction was less effective when growth place (GP)-derived cells were used. The different response of gene expression to EWS-FLI1 between eSZ and GP cells suggests importance of the specific cellular context for EWS-FLI1 to induce Ewings sarcoma. The Wnt/-catenin pathway was involved in close relationship to the cellular context, with Dkk2 and Wipf1 as important downstream modulators. Furthermore, gene expression profiling revealed similarity between our models and human Ewings sarcoma. These results indicate that Ewings sarcoma originates from the embryonic osteochondrogenic progenitor.

Publication Title

Ewing's sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors.

Sample Metadata Fields

Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact