refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 184 results
Sort by

Filters

Technology

Platform

accession-icon GSE32614
Effects of Aging and Anatomic Location on Gene Expression in Human Retina
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Objective: To determine the effects of age and topographic location on gene expression in human neural retina.

Publication Title

Effects of aging and anatomic location on gene expression in human retina.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE89731
Octopamine Enhances Oxidative Stress Resistance Through the Fasting-Responsive Transcription Factor DAF-16/FOXO in C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Dietary restriction regimens lead to enhanced stress resistance and extended lifespan in many species through the regulation of fasting and/or diet responsive mechanisms. The fasting stimulus is perceived by sensory neurons and causes behavioral and metabolic adaptations. Several studies have implicated that the nervous system is involved in the regulation of longevity. However, it remains largely unknown whether the nervous system contributes to the regulation of lifespan and/or stress resistance elicited by fasting. In this study, we first investigated the role of the nervous system in fasting-elicited longevity and stress resistance. We found that lifespan extension in Caenorhabditis elegans caused by an intermittent fasting (IF) regimen was suppressed by functional defects in sensory neurons. The IF-induced longevity was also suppressed in a mutant that lacks the enzyme required for the synthesis of an amine neurotransmitter, octopamine (OA), which acts in the absence of food, i.e., under fasting conditions. Although OA administration did not significantly extend the lifespan, it enhanced organismal resistance to oxidative stress. This enhanced resistance was suppressed by a mutation of the OA receptors, SER-3 and SER-6. Moreover, we found that OA administration promoted the nuclear translocation of DAF-16, the key transcription factor in fasting responses, and that the OA-induced enhancement of stress resistance required DAF-16. Altogether, our results suggest that OA signaling, which is triggered by the absence of food, shifts the organismal state to a more protective one to prepare for environmental stresses.

Publication Title

Octopamine enhances oxidative stress resistance through the fasting-responsive transcription factor DAF-16/FOXO in C. elegans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP032811
Consequences of beta-PDGFR deletion on hepatic stellate cells during hepatic regeneration
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: The goal of this study was to determine biological consequences during liver regeneration following partial hepatectomy in mice by next-generation sequencing. A particular interest was to compare mice with either a floxed b-PDGFR allele to mice that harbored a deletion of b-PDGFR in hepatic stellate cells (HSCs), by crossing b-PDGFR fl/fl mice with transgenic GFAP-Cre mice. Methods: b-PDGFR fl/fl mice or mice with a HSC-specific deletion of b-PDGFR underwent either sham operation or 70% partial hepatectomy. Following 72 hours, livers were collected and total RNA was extracted using tizol, followed by a purification using Quiagen spin columns including an on-column DNAse digestion step. Conclusion: Our study represents a detailed analysis of hepatic transcriptome, with biologic replicates, generated by RNA-seq technology of livers following sham operation or partial hepatectomy in b-PDGFR fl/fl mice or b-PDGFRfl/fl/GRAP-Cre mice. Overall design: Whole liver mRNA profiles of sham operated livers or livers collected 72hours after partial hepatectomy of beta-PDGFR fl/fl and beta-PDGFR fl/fl/GFAP-Cre (creating a hepatic stellate cell-specific deletion of b-PDGFR) mice were generated by deep sequencing, in duplicate, using Illumina HiSeq2000.

Publication Title

Induction and contribution of beta platelet-derived growth factor signalling by hepatic stellate cells to liver regeneration after partial hepatectomy in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE53937
Identification of genes involved in cell death induced by sodium fluoride in rat oral epithelial cells
  • organism-icon Rattus norvegicus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Although an appropriate range of fluoride is thought to be safe and effective, excessive fluoride intake results in toxic effects in either hard tissues of teeth and skeleton or soft tissues of kidney, lung and brain. It is also well known that fluoride at a millimolar range elicits the complex cellular responses such as enzyme activity, signal transduction and apoptosis in many kinds of cells. However, its toxic effects are still unclear.

Publication Title

Genes and gene networks involved in sodium fluoride-elicited cell death accompanying endoplasmic reticulum stress in oral epithelial cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Time

View Samples
accession-icon GSE63941
Expression data from cultured human esophageal squamous cell carcinoma cell lines and cultured human fibroblasts.
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cancer cells express different sets of receptor type tyrosine kinases. These receptor kinases may be activated through autocrine or paracrine mechanisms. Fibroblasts may modify the biologic properties of surrounding cancer cells through paracrine mechansms.

Publication Title

The role of HGF/MET and FGF/FGFR in fibroblast-derived growth stimulation and lapatinib-resistance of esophageal squamous cell carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP074134
ENL Links Histone Acetylation to Oncogenic Gene Expression in AML
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge IconNextSeq 500, Illumina HiSeq 2000

Description

Cancer cells are characterized by aberrant epigenetic landscapes and often exploit the chromatin machinery to activate oncogenic gene expression programs1. The recognition of modified histones by “reader” proteins constitutes a key mechanism underlying these processes; therefore targeting such pathways holds clinical promise, as exemplified by the recent development of BET bromodomain inhibitors2,3. We recently identified the YEATS domain as a novel acetyllysine-binding module4, yet its functional importance in human cancer remains unknown. Here we show that the YEATS domain-containing protein ENL, but not its paralog AF9, is required for disease maintenance in a variety of acute myeloid leukaemias (AML). CRISPR-Cas9 mediated depletion of ENL led to anti-leukemic effects, including increased terminal myeloid differentiation and suppression of leukaemia growth in vitro and in vivo. Biochemical and crystal structural studies in vitro and ChIP-seq analyses in leukaemia cells revealed that ENL binds to acetylated histone H3, and colocalizes with H3K27ac and H3K9ac on the promoters of actively transcribed genes that are essential for leukaemias. Disrupting the interaction between the YEATS domain and histone acetylation via structure-based mutagenesis reduced RNA polymerase II recruitment on ENL target genes, thus leading to suppression of oncogenic gene expression programs. Importantly, disruption of ENL’s functionality further sensitized leukaemia cells to BET inhibitors. Together, our study identifies ENL as a histone acetylation reader that regulates oncogenic transcriptional programs in AML and suggests that displacement of ENL from chromatin is a promising epigenetic therapy alone or in combination with BET inhibitors for AML Overall design: iCas9-MOLM-13 or MV411 cells were transduced with sgRNA or shRNA targeting control or ENL in indicated conditions. RNA-seq was then performed to identify differentially expressed genes.

Publication Title

ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon SRP119595
Quantitative Transcriptome Analysis of T cells stimulated with STING ligands
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

STING plays a key role in detecting cytosolic DNA and induces type I interferon responses for host defense against pathogens. Although T cells highly express STING, its physiological role remains unknown. In this study, we show that costimulation of T cells via TCR and STING ligand induce type I IFN responses like innate immune cells. Overall design: Naïve CD4+ T cells were stimulated with anti-CD3/28 in the presence or absence of STING ligand and analyzed the transcriptome using Illumina HiSeq1500.

Publication Title

Reciprocal regulation of STING and TCR signaling by mTORC1 for T-cell activation and function.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP073926
Gene expression changes upon Mof knockout in MLL-AF9 transformed murine LSKs
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report Illumina next generation RNA sequencing (RNAseq) of MLL-AF9 in vitro transformed murine LSKs upon genetic deletion of Mof. These gene expression data illustrate that Mof regulates the expression of genes involved in DNA damage response and chromatin stability in MLL-AF9 transformed cells. Overall design: RNAseq comparing Mof homozygous knockout cells to Mof wild type control

Publication Title

Histone Acetyltransferase Activity of MOF Is Required for <i>MLL-AF9</i> Leukemogenesis.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE55339
Gene expression profiles of uhrf1 mutant zebrafish
  • organism-icon Danio rerio
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

UHRF1 (Ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication, is essential for maintaining DNA methylation patterns during cell division and is suggested to direct additional repressive epigenetic marks. Uhrf1 mutation in zebrafish results in multiple embryonic defects including failed hepatic outgrowth, but the epigenetic basis of these phenotypes is not known. We find that DNA methylation is the only epigenetic mark that is depleted in uhrf1 mutants and make the surprising finding that despite the reduced organ size in uhrf1 mutants, genes regulating DNA replication and S-phase progression were highly upregulated. Further, there is a striking increase in BrdU incorporation in uhrf1 mutant cells, and they retained BrdU labeling over several days, indicating they are arrested in S-phase. Moreover, some of the label retaining nuclei co-localized with TUNEL positive nuclei, suggesting that arrested cells are responsible for apoptosis. Importantly, dnmt1 mutation phenocopies the S-phase arrest and hepatic outgrowth defects in uhrf1 mutants and Dnmt1 knock-down enhances the uhrf1 hepatic phenotype. Together, these data indicate that DNA hypomethylation is sufficient to generate the uhrf1 mutant phenotype by promoting an S-phase arrest. We thus propose that cell cycle arrest is a mechanism to restrict propagation of epigenetically deranged cells during embryogenesis.

Publication Title

DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26146
Expression data from cultured human lung tissue-derived fibroblasts and human vascular adventitial fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In order to find the difference between human lung tissue-derived fibroblasts and human vascular adventitial fibroblasts for enhancing tumor formation ablity of human lung adenocarcinoma cell line A549, we found that human vascular adventitial fibroblasts enhance A549 tumor formation in vivo compared to human lung tissue-derived fibroblasts. To find the responsible genes for this phenomena, we used microarray analysis to find the expression difference between lung tissue-derived fibroblasts and vascular adventitial fibroblas

Publication Title

Podoplanin-positive fibroblasts enhance lung adenocarcinoma tumor formation: podoplanin in fibroblast functions for tumor progression.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact