refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 277 results
Sort by

Filters

Technology

Platform

accession-icon GSE15490
Sequential gene expression profiling in CLL during treatment
  • organism-icon Homo sapiens
  • sample-icon 50 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Purpose:

Publication Title

Sequential gene expression profiling during treatment for identification of predictive markers and novel therapeutic targets in chronic lymphocytic leukemia.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE18005
Human colorectal cancer cell lines treated with several inhibitors of PI3Kinase AKT signaling pathway
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Signal transduction processes mediated by phosphatidyl inositol phosphates affect a broad range of cellular processes such as cell cycle progression, migration and cell survival. The protein kinase AKT is one of the major effectors in this signaling network. Chronic AKT activation contributes to oncogenic transformation and tumor development. Therefore, new small drugs were designed to block AKT activity for cancer treatment.

Publication Title

Characterization of AKT independent effects of the synthetic AKT inhibitors SH-5 and SH-6 using an integrated approach combining transcriptomic profiling and signaling pathway perturbations.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE3542
Profiling of MCF-7 cell lines stably overexpressing (ca)Raf-1, (ca)MEK, (ca)erbB-2, or ligand-activatable EGFR.
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Profiling of MCF-7 cell lines stably overexpressing constitutively active Raf-1, constitutively active MEK, constitutively active c-erbB-2, or ligand-activatable EGFR as models of overexpressed growth factor signaling, as well as control vector transfected cells (coMCF-7) and control vector transfected cells long-term adapted for estrogen-independent growth (coMCF-7/lt-E2).

Publication Title

Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE110613
Profiling of villi transcriptome in Trpm7 gene deficient mice and control littermates.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To attain deeper insight into metabolic alterations in Trpm7 gene deficient mice we used microarrays for profiling of transcripts in villi of Trpm7 ko and control mice.

Publication Title

TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE5309
Transcriptional Profiling of Mammary Gland Side Population Cells
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Similar to the bone marrow, the mammary gland contains a distinct population of Hoechst-effluxing side population cells, MG-SPs. To better characterize MG-SPs, their microarray gene profiles were compared to the remaining cells, which retain Hoechst dye (MG-NSPs). For analysis, gene ontology (GO) that describes genes in terms of biological processes and ontology traverser (OT) that performs enrichment analysis were utilized. OT showed that MG-SP specific genes were enriched in the GO categories of cell cycle regulation and checkpoints, multi-drug resistant transporters, organogenesis, and vasculogenesis. The MG-NSP upregulated genes were enriched in the GO category of cellular organization and biogenesis which includes basal epithelial markers, p63, smooth muscle actin (SMA), myosin, alpha-6 integrin, cytokeratin (CK) 14, as well as luminal markers, CK8 and CD24. Additional studies showed that a higher percentage of MG-SPs exist in the G1 phase of the cell cycle compared to the MG-NSPs. G1 cell cycle block of MG-SPs may be explained by higher expression of cell cycle negative regulatory genes such as TGF-beta2 (transforming growth factor-beta2), IGFBP-5 (insulin like growth factor binding protein-5), P18 INK4C and Wnt-5a (wingless-5a). Accordingly, a smaller percentage of MG-SPs expressed nuclear b-catenin, possibly as a consequence of the higher expression of Wnt-5a. In conclusion, microarray gene profiling suggests that MG-SPs are a lineage deficient mammary gland sub-population expressing key genes involved in cell cycle regulation, development and angiogenesis.

Publication Title

Transcriptional profiling of mammary gland side population cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32372
Innate response activator B cells are sentinels that guard against polymicrobial sepsis
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Innate immunity is fundamental to recognition and clearance of bacterial infection. The relevant cells and molecules that orchestrate an effective response, however, remain incompletely understood. Here we describe a previously unknown population of B cells, which we have named innate response activator (IRA) B cells that recognize bacteria directly through TLR-4-MyD88 and protect against polymicrobial sepsis.

Publication Title

Innate response activator B cells protect against microbial sepsis.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE2180
C. elegans embryonic timecourse in wt and mutant embryos
  • organism-icon Caenorhabditis elegans
  • sample-icon 123 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

This series of samples comprises multiple early embryonic time courses for C. elegans. Time courses consisting of 10 time points each for 4 different genotypes are included: wild-type (strain N2 grown on E. coli strain OP50), pie-1(zu154) (progeny of homozygous mutant mothers [Unc] of strain JJ532 grown on E. coli strain OP50), pie-1(zu154);pal-1(RNAi) (progeny of homozygous mutant mothers [Unc] of strain JJ532 grown on E. coli strain HT115 expressing pal-1 hairpin RNA), and mex-3(zu155);skn-1(RNAi) (progeny of homozygous mutant mothers [Dpy] of strain JJ518 grown on E. coli strain HT115 expressing skn-1 hairpin RNA). Embryos were manually staged by morphology at the 4-cell stage and allowed to develop in water for defined amounts of time at 22 degrees C. RNA was amplified as described (Baugh et al. Development, 2003; Baugh et al. Nucleic Acids Research, 2001). This series of samples comprises all replicate data reported by Baugh et al. (Development, 2005).

Publication Title

The homeodomain protein PAL-1 specifies a lineage-specific regulatory network in the C. elegans embryo.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7561
Expression data from IGF-I-stimulated MCF-7 cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Substantial evidence implicates IGF-I signaling in the development and progression of breast cancer. To identify transcriptional targets of IGF action in breast cancer cells, we performed gene expression profiling (>22,000 RNA transcripts) of IGF-I-stimulated MCF-7 cells, a well characterized breast cancer cell line that is highly responsive to IGFs. We defined an IGF-I gene signature pattern of hundreds of genes either up-regulated or down-regulated at both 3 and 24 hrs in vitro. After removing genes considered generic to cell proliferation, the signature was examined in four different public profile datasets of clinical breast tumors (representing close to 1000 patients), as well as in profile datasets of experimental models for various oncogenic signaling pathways. Genes with early and sustained regulation by IGF-I were highly enriched for transcriptional targets of the estrogen, Ras, and PI3K/Akt/mTOR pathways. The IGF-I signature appeared activated in most estrogen receptor-negative (ER-) clinical breast tumors and in a substantial subset (~25%) of ER+ breast tumors. Patients with tumors showing activation of the IGF-I signature tended to have a shorter time to disease recurrence (including patients not receiving adjuvant therapy), both when considering all patients and the subset of ER+ patients. We found evidence for cross-talk and common transcriptional endpoints between the IGF-I and estrogen systems. Our results support the idea that the IGF-I pathway is one mechanism by which breast tumors may acquire hormone independence and a more aggressive phenotype.

Publication Title

Insulin-like growth factor-I activates gene transcription programs strongly associated with poor breast cancer prognosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8141
Expression data from MCF7 wt and MCF7/HER2-18 xenografts
  • organism-icon Homo sapiens
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To investigate molecular mechanisms of resistance, we used two different in vivo xenograft models of estrogen receptor-positive (ER+) breast cancer, with or without HER2 over-expression (MCF7/HER2-18 and MCF7 wt, respectively). Mice with established tumors were assigned to the following treatment groups: continued estrogen supplementation (E2), estrogen deprivation (ED), ED plus tamoxifen (Tam), all with or without the EGFR tyrosine kinase inhibitor gefinitinib (G). Another group received ED plus the antiestrogen fulvestrant (MCF7 wt only). Tumors with acquired or de novo resistance to these endocrine therapies were profiled for mRNA expression using Affymetrix Genechip arrays.

Publication Title

Development of resistance to targeted therapies transforms the clinically associated molecular profile subtype of breast tumor xenografts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8139
Expression data from MCF7/HER2-18 xenografts
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To investigate molecular mechanisms of resistance, we used two different in vivo xenograft models of estrogen receptor-positive (ER+) breast cancer, with or without HER2 over-expression (MCF7/HER2-18 and MCF7 wt, respectively). Mice with established tumors were assigned to the following treatment groups: continued estrogen supplementation (E2), estrogen deprivation (ED), ED plus tamoxifen (Tam), all with or without the EGFR tyrosine kinase inhibitor gefinitinib (G). Another group received ED plus the antiestrogen fulvestrant (MCF7 wt only). Tumors with acquired or de novo resistance to these endocrine therapies were profiled for mRNA expression using Affymetrix Genechip arrays.

Publication Title

Development of resistance to targeted therapies transforms the clinically associated molecular profile subtype of breast tumor xenografts.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact