refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 109 results
Sort by

Filters

Technology

Platform

accession-icon GSE56752
Human Cytomegalovirus in Glioblastoma Stemness--Results from Human, Mouse and HCMV DNA arrays
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cytomegalovirus Immediate-Early Proteins Promote Stemness Properties in Glioblastoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36337
Cytomegalovirus promotes maintenance and growth of glioblastoma stem cells [Mouse gene expression]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We introduced the HCMV IE1 gene into a mouse model of spontaneous glioma driven by p53KD and overexpression of Ras and PDGF and compared the transcriptomes of mouse gliomas +/- IE1. The following plasmids were utilized for glioma induction in equal parts: pT2/C-Luc/PGK-SB100, pT2/Cag-NrasV12, pT2/shP53/GFP4/mPDGF, and pT2/Cag-IE1 or pT2/C-Neo.

Publication Title

Cytomegalovirus Immediate-Early Proteins Promote Stemness Properties in Glioblastoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56715
Cytomegalovirus promotes maintenance and growth of glioblastoma stem cells [Human gene expression]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Primary human GBM stem like cells were infected with HCMV TR strain (MOI=1) and treated with IE siRNA (a combination of oligos targeting IE1 and IE2 HCMV genes)

Publication Title

Cytomegalovirus Immediate-Early Proteins Promote Stemness Properties in Glioblastoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35478
Characterization of colon cancer cells: a functional approach characterizing CD133 as a potential stem cell marker
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: Isolation and characterization of tumourigenic colon cancer initiating cells may help to develop novel diagnostic and therapeutic procedures. Methods: We characterized a panel of fourteen human colon carcinoma cell lines and their corresponding xenografts for the surface expression of different potential stem cell markers: CD133, CD24, CD44, CDCP1 and CXCR4. In five cell lines and nine xenografts mRNA expression of the investigated markers was determined. Tumour growth behaviour of CD133+, CD133- and unsorted SW620 cells was evaluated in vivo. Results: All surface markers showed distinct expression patterns in the examined tumours. Analyses of the corresponding xenografts revealed a significant reduction of cell numbers expressing the investigated markers. CD44 and CXCR4 mRNA expression correlated within the cell line panel and CD44 and CDCP1 within the xenograft panel, respectively. Small subpopulations of double and triple positive cells could be described. SW620 showed significantly higher take rates and shorter doubling times in vivo when sorted for CD133 positivity. Conclusion: Our data support the hypothesis of a small subset of cells with stem cell-like properties characterized by a distinct surface marker profile. In vivo growth kinetics give strong relevance for an important role of CD133 within the mentioned surface marker profile.

Publication Title

Characterization of colon cancer cells: a functional approach characterizing CD133 as a potential stem cell marker.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE25518
Testis developmental gene expression in cryptorchid boys at risk of azoospermia
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Despite timely and successful surgery, 32% of patients with bilateral and 10% with unilateral cryptorchidism will develop azoospermia. Cryptorchid boys at risk of azoospermia display a typical testicular histology of impaired mini-puberty at the time of the orchidopexy.

Publication Title

Testicular gene expression in cryptorchid boys at risk of azoospermia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP150616
RNA seq comparison between scrambled and shGRP78 cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Pancreatic cancer cells transduced with sh knockdown of GRP78 Overall design: Pancreatic cancer mRNA profiles of scrambled control versus shGRP78 cell line, in triplicate, using Illumina Truseq Stranded Total-RNA library

Publication Title

ER stress sensor, glucose regulatory protein 78 (GRP78) regulates redox status in pancreatic cancer thereby maintaining "stemness".

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP081252
Loss of Snf5 and the formation of an aberrant SWI/SNF complex
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Aberrant forms of the SWI/SNF chromatin remodeling complex are associated with human disease. Loss of the Snf5 subunit of SWI/SNF is a driver mutation in pediatric rhabdoid cancers and forms aberrant sub-complexes that are not well characterized. We determined the effects of loss of Snf5 on the composition, nucleosome binding, recruitment and remodeling activities of yeast SWI/SNF. The Snf5 subunit interacts with the ATPase domain of Snf2 and forms a submodule consisting of Snf5, Swp82 and Taf14 as shown by mapping SWI/SNF subunit interactions by crosslinking-mass spectrometry and subunit deletion followed by immunoaffinity chromatography. Snf5 promoted binding of the Snf2 ATPase domain to nucleosomal DNA, enhanced its catalytic activity and facilitated nucleosome remodeling. Snf5 was required for acidic transcription factors to recruit SWI/SNF to chromatin. RNA-seq analysis suggested that both the recruitment and catalytic functions mediated by Snf5 are required for SWI/SNF regulation of gene expression. Overall design: Determining the effects of loss of Snf5 on the composition, nucleosome binding, recruitment, remodeling activities and gene expression profile of yeast SWI/SNF

Publication Title

Loss of Snf5 Induces Formation of an Aberrant SWI/SNF Complex.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP073163
Next Generation Sequencing Compares Effects of microRNA-9 perturbation in control and SZ hiPSC NPCs
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To follow-up findings that miR-9 was abundantly expressed in control NPCs, significantly down-regulated in a subset of SZ NPCs, and that miR-9 levels/activity, neural migration and diagnosis were strongly correlated, we tested the effect of manipulating miR-9 at cellular, proteomic and transcriptomic levels. Unexpectedly, proteomic- and RNAseq-based analysis revealed that these effects were mediated primarily by small changes in expression of indirect miR-9 targets, rather than large changes in direct miR-9 targets; these indirect targets are enriched for migration-associated genes. Together these data indicate that aberrant levels and activity of miR-9 may be one of the many factors that contribute to SZ risk, at least in a subset of patients. Methods: We compared global transcription of forebrain NPCs from two control and two SZ patients with manipulated miR-9 levels by RNAseq. Results: Although RNAseq analysis revealed large inter-individual heterogeneity, we were able to resolve several functional consistencies in the effects of our miR-9 perturbations: i) the change in miR-9 activity was consistent with the inhibitory role of miR-9, ii) the gene expression fold-change of miR-9 target genes (between each perturbation and its corresponding control, summarized by the first principal component) was correlated (r=0.95, p=3.92e-04) with miR-9 fold change and iii) the differentially expressed (DE; p <0.01) gene list resulting from miR-9 perturbation (paired t-test) was enriched for miR-9 targets (1.53-fold, p=1.2e-5). Conclusions: We integrated the miR-9 perturbation RNAseq data with our existing RNAseq datasets contrasting control and SZ hiPSC NPC expression from our cohort 1 (six controls, four patients), to ask whether there was any relationship between the “SZ NPC signature” and “miR-9 perturbation” datasets; we observed that the DE (p-value <0.01) in “SZ NPC signature” is enriched for DE (fdr<0.01) in “miR-9 perturbation” (the overall enrichment is 2.31-fold (p=9.39e-09)); there is significant correlation between DE fold-change in these two datasets (overall genes r=0.188; p<10e-50). Effects were mediated primarily by small changes in expression of indirect miR-9 targets, rather than large changes in direct miR-9 targets; these indirect targets are enriched for migration-associated genes Overall design: Biological duplicates of passage-matched NPCs from 1 control (female) and 1 SZ patient (female) were transduced with either RV-GFP or RV-miR-9-GFP; GFP-positive NPCs were purified by fluorescent activated cell sorting (FACS) and expanded for two passages. In parallel, passage-matched NPCs from 2 controls (1 male, 1 female) and 2 SZ patients (1 male, 1 female) were transiently transfected with either scrambled or miR-9 LNA probes. In both instances, miR-9 perturbation was confirmed by qPCR.

Publication Title

Dysregulation of miRNA-9 in a Subset of Schizophrenia Patient-Derived Neural Progenitor Cells.

Sample Metadata Fields

Sex, Specimen part, Disease, Subject

View Samples
accession-icon SRP050377
Next Generation Sequencing Facilitates Comparisons of Control and Schizophrenia-Patient derived hiPSC-derived NPCs
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Cell-based models of many neurological and psychiatric diseases, established by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), have now been reported. While numerous reports have demonstrated that neuronal cells differentiated from hiPSCs are electrophysiologically active mature neurons, the “age” of these cells relative to cells in the human brain remains unresolved. Comparisons of gene expression profiles of hiPSC-derived neural progenitor cells (NPCs) and neurons to the Allen BrainSpan Atlas indicate that hiPSC neural cells most resemble first trimester neural tissue. Consequently, we posit that hiPSC-derived neural cells may most accurately be used to model the early developmental defects that contribute to disease predisposition rather than the late features of the disease. Though the characteristic symptoms of schizophrenia SZ generally appear late in adolescence, it is now thought to be a neurodevelopmental condition, often predated by a prodromal period that can appear in early childhood. Postmortem studies of SZ brain tissue typically describe defects in mature neurons, such as reduced neuronal size and spine density in the prefrontal cortex and hippocampus, but abnormalities of neuronal organization, particularly in the cortex, have also been reported. We postulated that defects in cortical organization in SZ might result from abnormal migration of neural cells. To test this hypothesis, we directly reprogrammed fibroblasts from SZ patients into hiPSCs and subsequently differentiated these disorder-specific hiPSCs into NPCs. SZ hiPSC differentiated into forebrain NPCs have altered expression of a number of cellular adhesion genes and WNT signaling. Methods: We compared global transcription of forebrain NPCs from six control and four SZ patients by RNAseq. Results: Multi-dimensional scaling (MDS) resolved most SZ and control hiPSC NPC samples; 848 genes were significantly differentially expressed (FDR<0.01) Conclusions: The WNT signaling pathway was enriched 2-fold (fisher exact test p-value = 0.031). Overall design: 1-2 independent differentiations (biological replicates) for each of four control and four schizophrenia patients were analyzed; samples were generated in parallel to neuron RNAseq data.

Publication Title

Dysregulation of miRNA-9 in a Subset of Schizophrenia Patient-Derived Neural Progenitor Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE106382
Expression data of iPSC-derived motor neurons from healthy donor, FALS, SALS, and drug-treated them
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We established several iPSCs from healthy donors, familial ALS (FALS) patients, and sporadic ALS (SALS) patients. Using our differentiation protocol originally developed, we differentiated these iPSCs toward spinal motor neurons (MNs) and reproduced ALS pathology in a dish.

Publication Title

Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent.

Sample Metadata Fields

Specimen part, Disease, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact