refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 98 results
Sort by

Filters

Technology

Platform

accession-icon GSE30470
Gene expression correlated with inattention and hyperactivity/impulsivity rating scales in Tourette syndrome
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Inattention, impulsivity and hyperactivity are the primary behaviors associated with Attention Deficit / Hyperactivity Disorder (ADHD). Previous studies proved that peripheral blood gene expression signature could mirror central nervous system disease.

Publication Title

Correlations of gene expression with ratings of inattention and hyperactivity/impulsivity in Tourette syndrome: a pilot study.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE87431
H19 Noncoding RNA, an independent prognostic factor, regulates essential Rb-E2F and CDK8/-catenin signaling in colorectal cancer
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE87430
Expression data from HCT116 cells following H19 knockdown
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Knockdown of H19 leads to cell cycle arrest, reduced cell proliferation, and reduced cell migration in HCT116 cells.

Publication Title

H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE87429
Expression data from HCT116 cells following CTNNB1 knockdown
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We used microarrays to detail the global programme of gene expression following CTNNB1 knockdown in HCT116 cells

Publication Title

H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE87428
Expression data from HCT116 cells following CDK8 knockdown
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We used microarrays to detail the global programme of gene expression following CDK8 knockdown in HCT116 cells

Publication Title

H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE87427
Expression data from DLD1 cells following H19 knockdown
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Knockdown of H19 leads to cell cycle arrest, reduced cell proliferation, and reduced cell migration in DLD1 cells.

Publication Title

H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE89445
Expression data from D.melanogaster guts with a constitutively active Imd in the presence or absence of a microbiome
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Innate immune responses contributed to the containment of intestinal microbes.

Publication Title

Constitutive Immune Activity Promotes Tumorigenesis in Drosophila Intestinal Progenitor Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26199
Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max
  • organism-icon Populus trichocarpa, Glycine max, Arabidopsis thaliana
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE26197
Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max [Arabidopsis]
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The heat shock response continues to be layered with additional complexity as interactions and cross-talk among heat shock proteins, the reactive oxygen network and hormonal signaling are discovered. However, comparative analyses exploring variation in each of these processes among species remains relatively unexplored. In controlled environment experiments, photosynthetic response curves were conducted from 22 C to 42 C and indicated that temperature optimum of light saturated photosynthesis was greater for Glycine max relative to Arabidopsis thaliana or Populus trichocarpa. Transcript profiles were taken at defined states along the temperature response curves and inferred pathway analysis revealed species-specific variation in the abiotic stress and the minor carbohydrate raffinose/galactinol pathways. A weighted gene co-expression network approach was used to group individual genes into network modules linking biochemical measures of the antioxidant system to leaf-level photosynthesis among P. trichocarpa, G. max and A. thaliana. Network enabled results revealed an expansion in the G. max HSP17 protein family and divergence in the regulation of the antioxidant and heat shock module relative to P. trichocarpa and A. thaliana. These results indicate that although the heat shock response is highly conserved, there is considerable species-specific variation in its regulation.

Publication Title

Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE26198
Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max [Soy]
  • organism-icon Glycine max
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The heat shock response continues to be layered with additional complexity as interactions and cross-talk among heat shock proteins, the reactive oxygen network and hormonal signaling are discovered. However, comparative analyses exploring variation in each of these processes among species remains relatively unexplored. In controlled environment experiments, photosynthetic response curves were conducted from 22 C to 42 C and indicated that temperature optimum of light saturated photosynthesis was greater for Glycine max relative to Arabidopsis thaliana or Populus trichocarpa. Transcript profiles were taken at defined states along the temperature response curves and inferred pathway analysis revealed species-specific variation in the abiotic stress and the minor carbohydrate raffinose/galactinol pathways. A weighted gene co-expression network approach was used to group individual genes into network modules linking biochemical measures of the antioxidant system to leaf-level photosynthesis among P. trichocarpa, G. max and A. thaliana. Network enabled results revealed an expansion in the G. max HSP17 protein family and divergence in the regulation of the antioxidant and heat shock module relative to P. trichocarpa and A. thaliana. These results indicate that although the heat shock response is highly conserved, there is considerable species-specific variation in its regulation.

Publication Title

Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact