refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 454 results
Sort by

Filters

Technology

Platform

accession-icon SRP148856
Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells (RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

The development of CRISPR-Cas systems for targeting DNA and RNA in diverse organisms has transformed biotechnology and biological research. Moreover, the CRISPR revolution has highlighted bacterial adaptive immune systems as a rich and largely unexplored frontier for discovery of new genome engineering technologies. In particular, the class 2 CRISPR-Cas systems, which use single RNA-guided DNA-targeting nucleases such as Cas9, have been widely applied for targeting DNA sequences in eukaryotic genomes. Here, we report DNA-targeting and transcriptional control with class I CRISPR-Cas systems. Specifically, we repurpose the effector complex from type I variants of class 1 CRISPR-Cas systems, the most prevalent CRISPR loci in nature, that target DNA via a multi-component RNA-guided complex termed Cascade. We validate Cascade expression, complex formation, and nuclear localization in human cells and demonstrate programmable CRISPR RNA (crRNA)-mediated targeting of specific loci in the human genome. By tethering transactivation domains to Cascade, we modulate the expression of targeted chromosomal genes in both human cells and plants. This study expands the toolbox for engineering eukaryotic genomes and establishes Cascade as a novel CRISPR-based technology for targeted eukaryotic gene regulation. Overall design: Examination of transcriptome-wide changes in gene expression with Cascade-mediated activation of endogenous genes.

Publication Title

Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE6141
Global Analysis of the Drosophila NELF complex
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

To determine the physiological targets of the NELF complex, and provide insight into the mechanism of NELF activity in vivo.

Publication Title

NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21829
Differential gene expression in adrenal medulla after cardiac pressure overload
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptom analysis of microdissect adrenal medulla after 8 weeks of cardiac pressure overload caused by transverse aortic constriction.

Publication Title

Chronic cardiac pressure overload induces adrenal medulla hypertrophy and increased catecholamine synthesis.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE35830
Seminal plasma and transforming growth factor- regulate gene expression in human Ect1 ectocervical epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we examined the influence of seminal plasma on gene expression in human Ect1 ectocervical epithelial cells, and the extent to which recombinant TGF3 elicits comparable changes. Ect1 cells were incubated with recombinant human TGF3 (5 ng/ml), 10% pooled human seminal plasma (v/v), or medium alone for 10h. RNA was reverse transcribed into cDNA and hybridized to Affymetrix GeneChip Human Genome U133 plus 2.0 microarrays (Affymetrix, Santa Clara, CA). Exposure of Ect1 cells to seminal plasma resulted in differential expression of a total of 3955 probe sets, identified using high stringency criteria with MAS 5.0 analysis. These corresponded to 1338 genes up-regulated and 1343 genes down-regulated by seminal plasma. TGF3 treatment of Ect1 cells resulted in differential expression of 884 probe sets, corresponding to 346 up-regulated genes and 229 down-regulated genes. The genes differentially regulated by seminal plasma included several genes associated with cytokinecytokine receptor interaction, TGF signalling, JAK/STAT signalling or VEGF signalling pathways, as specified by the KEGG database. Of 47 genes in these families, 17 (36.1%) were similarly regulated by both seminal plasma and TGF3. These data, together with additional experiments showing all three TGF isoforms can regulate inflammatory cytokine expression in Ect1 cells, identify TGF isoforms as key agents in seminal plasma that signal induction of pro-inflammatory cytokine synthesis in cervical cells.

Publication Title

TGF-β mediates proinflammatory seminal fluid signaling in human cervical epithelial cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE9624
Differential gene expression in omental adipose tissue from obese children
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Characterization of genes associated with adipose tissue is key to understanding the pathogenesis of obesity and developing treatments for this disorder. Differential gene expression in the adipose tissue has been described in adulthood but none studies have been developed on childhood. The purpose of this study was to compare gene expression in omental adipose tissue from obese prepubertal and normal weight children. We selected 5 obese (BMI adjusted for age and sex z score >2) and 6 normal weight children. RNA was extracted from omental adipose tissue biopsies and cRNA was hybridizated on the human genome U133 Plus 2.0 Arrays (Affymetrix). Microarray experiments were performed for each sample, and selected group of gene expression values were confirmed with real-time RT-PCR in 10 obese and 10 normal weigth prepubertal children. 1276 genes were found to be differentially expressed at P<0.05. Of those differential genes, 201 were upregulated (Fc>2) and 42 were downregulated (Fc<-2). Genes involved in metabolic and signalling pathways were altered in childhood obesity.

Publication Title

Genome-wide expression in visceral adipose tissue from obese prepubertal children.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE18004
Differential gene expression in stellate sympathetic ganglia after cardiac pressure overload
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptom analysis of stellate sympathetic ganglia after 8 weeks of cardiac pressure overload caused by transverse aortic constriction.

Publication Title

Sympathetic alpha(2)-adrenoceptors prevent cardiac hypertrophy and fibrosis in mice at baseline but not after chronic pressure overload.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE20472
Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP003416
GRO-seq in Drosophila melanogaster S2 cells
  • organism-icon Drosophila melanogaster
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Illumina Genome Analyzer

Description

Control of RNA transcription is critical for the development and homeostasis of all organisms, and can occur at multiple steps of the transcription cycle, including RNA polymerase II (Pol II) recruitment, initiation, promoter-proximal pausing, and elongation. That Pol II accumulates on many promoters in metazoans implies that steps other than Pol II recruitment are rate-limiting and regulated 1-6. By integrating genome-wide Pol II chromatin immunoprecipition (ChIP) and Global Run-On (GRO) genomic data sets from Drosophila cells, we examined critical features of Pol II near promoters. The accumulation of promoter-proximal polymerase is widespread, occurring on 70% of active genes; and unlike elongating Pol II within the body of genes, promoter Pol II are held paused by factors like NELF, unable to transcribe unless nuclei are treated with strong detergent. Notably, we find that the vast majority of promoter-proximal Pol II detected by ChIP are paused, thereby identifying the biochemical nature of this rate-limiting step in transcription. Finally, we demonstrate that Drosophila promoters do not have the upstream divergent Pol II that is seen so broadly and prominently on mammalian promoters. We postulate this is a consequence of Drosophila's extensive use of directional core promoter sequence elements, which contrasts with mammals' lack of directional elements and prevalence of CpG island core promoters. In support of this idea, we show that the fraction of mammalian promoters containing a TATA box core element is dramatically depleted of upstream divergent transcription. Overall design: Comparison of multiple GRO-seq data sets

Publication Title

Defining the status of RNA polymerase at promoters.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE53349
CD8+ T cells during acute viral respiratory infection are uniquely differentiated and regulated by multiple inhibitory receptors
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Acute viral infection typically generates functional effector CD8+ T cells that aid in pathogen clearance. However, during acute viral lower respiratory infection (LRI), lung CD8+ T cells are functionally impaired and do not optimally control viral replication, while spleen CD8+ T cells specific for the same viral epitopes remain fully functional. To better understand the mechanisms governing lung CD8+ T cell impairment, we used flow cytometry to sort anti-viral CD8+ T cells during viral LRI. Lung and spleen cells were stained with MHC-class I tetramers representing the immunodominant anti-viral CD8+ T cell epitope. We then sorted to high purity: nave CD8+ T cells, spleen epitope-specific CD8+ T cells, lung epitope-specific CD8+ cells and secondary infection lung epitope-specific CD8+ T cells. We then performed a genome wide transcriptional analysis of these cells to characterize the gene expression profile of lung CD8+ T cell impairment.

Publication Title

Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE73896
Hypertrophy induced KIF5B controls mitochondrial localization and function in neonatal rat cardiomyocytes
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.1 ST Array (ragene11st)

Description

Cardiac hypertrophy is associated with growth and functional changes of cardiomyocytes,including mitochondrial alterations, but the latter are still poorly understood. Here we investigated mitochondrial function and dynamic localization in neonatal rat ventricular cardiomyocytes (NRVCs) stimulated with insulin like growth factor 1 (IGF1) or phenylephrine (PE), mimicking physiological and pathological hypertrophic responses,respectively.

Publication Title

Hypertrophy induced KIF5B controls mitochondrial localization and function in neonatal rat cardiomyocytes.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact