refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1415 results
Sort by

Filters

Technology

Platform

accession-icon GSE78234
The HDAC inhibitor Panobinostat (LBH589) exerts in vivo anti-leukaemic activity against in MLL-rearranged Acute Lymphoblastic Leukaemia and involves the RNF20/RNF40/WAC H2B ubiquitination axis
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We demonstrate the in vivo efficacy of the histone deacetylase inhibitor Panobinostat (LHB589) against MLL-rearranged ALL using xenograft mouse models of MLL-rearranged ALL cell lines and primary patient cells. Panobinostat monotherapy showed strong anti-leukaemic effects, extending survival and reducing overall disease burden. Comprehensive molecular analyses in vitro showed the anti-leukaemic activity in MLL-rearranged ALL to involve depletion of H2B ubiquitination via suppression of the RNF20/RNF40/WAC E3 ligase complex.

Publication Title

The HDAC inhibitor panobinostat (LBH589) exerts in vivo anti-leukaemic activity against MLL-rearranged acute lymphoblastic leukaemia and involves the RNF20/RNF40/WAC-H2B ubiquitination axis.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE79057
Antileukemic Efficacy of BET Inhibitor in a Preclinical Mouse Model of MLL-AF4+ Infant ALL
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We investigated the anti-leukemic effects of the Bromodomain and Extra Terminal inhibitor I-BET151 on primary MLL-AF4 patient samples, using a xenotransplantation mouse model of MLL+ infant ALL in vivo. We reported that I-BET151 treatment impairs the engraftment and the disease burden of primary MLL+ infant ALL samples transplanted into immunedeficient mice. I-BET151 is able to arrest the growth of leukemic cells by blocking cell division and rapidly inducing apoptosis, through the deregulation of crucial target genes of the BRD4 and HOXA9/HOXA7 network. Moreover I-BET151 sensitizes glucocorticoid-resistant MLL+ cells to Prednisolone. Finally we observed that I-BET151 treatment is even more efficient when used in combination with HDAC inhibitor.

Publication Title

Antileukemic Efficacy of BET Inhibitor in a Preclinical Mouse Model of MLL-AF4<sup>+</sup> Infant ALL.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE36039
Polycomb repressive complex 2-dependent and independent functions of Jarid2 in transcriptional regulation in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Polycomb repressive complex 2-dependent and -independent functions of Jarid2 in transcriptional regulation in Drosophila.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36038
Polycomb repressive complex 2-dependent and independent functions of Jarid2 in transcriptional regulation in Drosophila [Affymetrix]
  • organism-icon Drosophila melanogaster
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Jarid2 was recently identified as an important component of the mammalian Polycomb Repressive Complex 2 (PRC2), where it has a major effect on PRC2 recruitment in mouse embryonic stem cells. Although Jarid2 is conserved in Drosophila, it has not previously been implicated in Polycomb (Pc) regulation. Therefore, we purified Drosophila Jarid2 and its associated proteins and find that Jarid2 associates with all of the known canonical PRC2 components, demonstrating a conserved physical interaction with PRC2 in flies and mammals. Furthermore, in vivo studies with Jarid2 mutants in flies demonstrate that among several histone modifications tested, only H3K27 methylation, the mark implemented by PRC2, was affected. Genome-wide profiling of Jarid2, Su(z)12 and H3K27me3 occupancy by ChIP-seq indicates that Jarid2 and Su(z)12 have a very similar distribution pattern on chromatin. However, Jarid2 and Su(z)12 occupancy levels at some genes are significantly different with Jarid2 being present at relatively low levels at many Pc response elements (PREs) of certain Homeobox (Hox) genes, providing a rationale for why Jarid2 was never identified in Pc screens. Gene expression analyses show that Jarid2 and E(z) (a canonical PRC2 component) are required not only for transcriptional repression but might also function in active transcription. Identification of Jarid2 as a conserved PRC2 interactor in flies provides an opportunity to begin to probe some of its novel functions in Drosophila development.

Publication Title

Polycomb repressive complex 2-dependent and -independent functions of Jarid2 in transcriptional regulation in Drosophila.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19242
Mitochondrial beta-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Cyanide is stoichiometrically produced as a co-product of the ethylene biosynthesis pathway, and it is detoxified by the b-cyanoalanine synthase enzyme. The molecular and phenotypical analysis of T-DNA insertional mutants of the mitochondrial b-cyanoalanine synthase CYS-C1 suggests that discrete accumulation of cyanide is not toxic for the plant and does not alter mitochondrial respiration rates, but does act as a strong inhibitor of root hair development. The cys-c1 null allele is defective in root hair formation and accumulates cyanide in root tissues. The root hair defect is phenocopied in wild type plants by the exogenous addition of cyanide to the growth medium and is reversed by the addition of hydroxocobalamin. Hydroxocobalamin not only recovers the root phenotype of the mutant, but also the formation of ROS at the initial step of the root hair tip. Transcriptional profile analysis of the cys-c1 mutant reveals that cyanide accumulation acts as a repressor signal for several genes encoding enzymes involved in cell wall rebuilding and the formation of the root hair tip, as well as genes involved in ethylene signaling and metabolism. Our results demonstrate that mitochondrial b-cyanoalanine synthase activity is essential to maintain a low level of cyanide for proper root hair development.

Publication Title

Mitochondrial beta-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE73509
CaSR modulator in neuroblastoma model
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st), Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cinacalcet inhibits neuroblastoma tumor growth and upregulates cancer-testis antigens.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE73506
CaSR modulator in neuroblastoma model [mouse]
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

CaSR modulation inhibits neuroblastoma growth

Publication Title

Cinacalcet inhibits neuroblastoma tumor growth and upregulates cancer-testis antigens.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE73504
CaSR modulator in neuroblastoma model [human]
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st), Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

CaSR modulation inhibits neuroblastoma growth

Publication Title

Cinacalcet inhibits neuroblastoma tumor growth and upregulates cancer-testis antigens.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE54582
Transcriptomic analysis of mammary tumors from MMTV-ErbB2 transgenic mice
  • organism-icon Mus musculus
  • sample-icon 222 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The tyrosine kinase ErbB2 positive breast tumors have more aggressive tumor growth, poorer clinical outcome, and more resistance to radiotherapy, chemotherapy and hormone therapy. A humanized anti-ErbB2 monoclonal antibody Herceptin and a small molecules inhibitor Lapatinib were developed and approved by FDA to treat patients with ErbB2 amplification and overexpression. Unfortunately, most ErbB2+ breast cancers do not respond to Herceptin and Lapatinib, and the majority of responders become resistant within 12 months of initial therapy (defined as secondary drug resistance). Such differences in response to Lapatinib treatment is contributed by substantial heterogeneity within ErbB2+ breast cancers. To address this possibility, we carried out transcriptomic analysis of mammary tumors from genetically diverse MMTV-ErbB2 mice. This will help us to have a better understanding of the heterogeneous response to ErbB2 targeted therapy and permit us to design better and more individualized (personalized) treatment strategies for human ErbB2 positive breast cancer.

Publication Title

Unraveling heterogeneous susceptibility and the evolution of breast cancer using a systems biology approach.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27077
Actin Cytoskeleton Integrates Auxin and Brassinosteroid Signaling in Plants.
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We describe a new mutant allele of the ACTIN2 gene with enhanced actin dynamics, displaying a broad array of twisting and bending phenotypes that resemble BR-treated plants. Moreover, auxin transcriptional regulation is enhanced on the mutant background, supporting the idea that shaping actin filaments is sufficient to modulate BR-mediated auxin responsiveness. The actin cytoskeleton thus functions as a scaffold for integration of auxin and BR signaling pathways.

Publication Title

Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact