refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 1 of 1 results
Sort by

Filters

Technology

Platform

accession-icon GSE71695
Characterization of RA839, a non-covalent small-molecule binder to Keap1 and selective activator of Nrf2 signalling
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The activation of the transcription factor NF-E2-related factor 2 (Nrf2) maintains cellular homeostasis in response to oxidative stress by the regulation of multiple cytoprotective genes. Without stressors the activity of Nrf2 is inhibited by its interaction with the kelch-like ECH-associated protein 1 (Keap1). Here, we describe RA839, a small molecule that binds non-covalently to the Nrf2-interacting kelch domain of Keap1 with a Kd of approximately 6 M, as demonstrated by X-ray co-crystallization and isothermal titration calorimetry. Whole-genome DNA arrays showed that at 10 M RA839 significantly regulated 105 genes in bone marrow-derived macrophages. Canonical pathway mapping of these genes revealed an activation of pathways linked with Nrf2 signalling. These pathways were also activated after the activation of Nrf2 by the silencing of Keap1 expression. RA839 regulated only two genes in Nrf2 knockout macrophages. Similar to the activation of Nrf2 by either silencing of Keap1 expression or by the reactive compound CDDO-Me, RA839 prevented the induction of both inducible nitric oxide synthase expression and nitric oxide release in response to lipopolysaccharides in macrophages. In mice RA839 acutely induced Nrf2-target gene expression in liver. RA839 is a selective inhibitor of the Keap1/Nrf2 interaction and a useful tool compound to study the biology of Nrf2.

Publication Title

Characterization of RA839, a Noncovalent Small Molecule Binder to Keap1 and Selective Activator of Nrf2 Signaling.

Sample Metadata Fields

Specimen part, Treatment

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact