refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 428 results
Sort by

Filters

Technology

Platform

accession-icon SRP077870
HIF-1a activation is sufficient for the development of MDS
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

Hypoxia inducible factor-1a (HIF-1a) is a critical transcription factor for the hypoxic response, angiogenesis, normal hematopoietic stem cell regulation, and cancer development. Importantly, HIF-1a is also a key regulator for immune cell activation. In order to determine whether HIF-1a is sufficient for developing MDS phenotypes, we generated blood specific inducible HIF-1a transgenic mice. Using Vav1-Cre/Rosa26-loxP-Stop-loxP (LSL) rtTA driver, stable HIF-1a can be induced in a doxycycline administration dependent manner. After induction, HIF-1a-induced mice developed thrombocytopenia, leukocytopenia, macrocytic anemia, and multi-lineage dysplasia. We also found activation of both innate and adaptive immunity in HIF-1a- induced mice compared to those from control mice. Taken together, these data suggest that HIF-1a is sufficient to trigger a variety of key MDS features Overall design: Expression profiles of mRNA in HSPCs from constitutively active form of HIF1a protein induced mice and their control mice.

Publication Title

Pathobiological Pseudohypoxia as a Putative Mechanism Underlying Myelodysplastic Syndromes.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP089915
MLL-PTD and RUNX1-knockout cooperate to induce MDS phenotypes
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

The MLL-PTD mutation is found in patients with MDS and AML, and not in other hematological malignancies. Previously, we showed that Mll-PTD knock-in heterozygous mice (MllPTD/WT mice) present with several MDS-associated features. However, these phenotypes are insufficient to constitute bona fide MDS. MllPTD/WT mice do not generate MDS or AML in primary or transplant recipient mice. This suggests that additional genetic and/or epigenetic defects are necessary for transformation to MDS or AML. In secondary AML and de novo AML, MLL-PTD mutation is significantly associated with mutations in RUNX1 and with the FLT3-ITD mutations. In fact, the combination of MLL-PTD with the FLT3-ITD allele leads to AML in mice. We combined the MLL-PTD with RUNX1 mutant proteins, in order to generate a new mouse model for MDS. We generated MllPTD/WT/Runx1Flox/Flox/Mx1-Cre mice to model loss-of-function RUNX1 mutations. To test the significance of HIF-1a in this model, we also generated MllPTD/WT/Runx1Flox/Flox/Hif-1aFlox/Flox/Mx1-Cre mice and genetically eliminated Hif-1a expression. We analyzed gene expression variations in the HSPCs comparing the MllPTD/WT/Runx1?/? with or without HIF-1a abrogation. Overall design: Expression profiles of mRNA in HSPCs from MLL-PTD/Runx1-KO mice with or without HIF-1a

Publication Title

Pathobiological Pseudohypoxia as a Putative Mechanism Underlying Myelodysplastic Syndromes.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE69306
Significant obesity associated gene expression changes are in the stomach but not intestines in obese mice
  • organism-icon Mus musculus
  • sample-icon 129 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The gastrointestinal (GI) tract can have significant impact on the regulation of the whole body metabolism and may contribute to the development of obesity and diabetes. To systemically elucidate the role of the GI tract in obesity, we performed a transcriptomic analyses in different parts of the GI tract of two obese mouse models: ob/ob and high-fat diet (HFD) fed mice. Compared to their lean controls, both obese mouse groups had significant amount of gene expression changes in the stomach (ob/ob: 959; HFD: 542), much more than the number of changes in the intestine. Despite the difference in genetic background, the two mouse models shared 296 similar gene expression changes in the stomach. Among those genes, some had known associations to obesity, diabetes and insulin resistance. In addition, the gene expression profile strongly suggested an increased gastric acid secretion in both obese mouse models, probably through an activation of the gastrin pathway. In conclusion, our data reveal a previously unknown dominant connection between the stomach and obesity.

Publication Title

Significant obesity-associated gene expression changes occur in the stomach but not intestines in obese mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE8021
Expression data from human donor lung biopsies
  • organism-icon Homo sapiens
  • sample-icon 50 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Expression profile of human donor lungs that have developed primary graft dysfunction (PGD) after lung transplantation and those that have not.

Publication Title

Expression profiling of human donor lungs to understand primary graft dysfunction after lung transplantation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3077
Dillution series comparison of Affymetrix and Illumina Expression Platforms
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The growth in popularity of RNA expression microarrays has been accompanied by concerns about the reliability of the data especially when comparing between different platforms. Here we present an evaluation of the reproducibility of microarray results using two platforms, Affymetrix GeneChips and Illumina BeadArrays. The study design is based on a dilution series of two human tissues (blood and placenta), tested in duplicate on each platform. By a variety of measures the two platforms yielded data of similar quality and properties. The results of a comparison between the platforms indicate very high agreement, particularly for genes which are predicted to be differentially expressed between the two tissues. Agreement was strongly correlated with the level of expression of a gene. Concordance was also improved when probes on the two platforms could be identified as being likely to target the same set of transcripts of a given gene. These results shed light on the causes or failures of agreement across microarray platforms. The set of probes we found to be most highly reproducible can be used by others to help increase confidence in analyses of other data sets using these platforms.

Publication Title

Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE46642
Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE56840
Histone-fold domain protein NF-Y promotes chromatin accessibility for cell type-specific master transcription factors
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Histone-fold domain protein NF-Y promotes chromatin accessibility for cell type-specific master transcription factors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56838
Histone-fold domain protein NF-Y promotes chromatin accessibility for cell type-specific master transcription factors [gene expression]
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Cell type-specific master transcription factors (MTFs) play vital roles in defining cell identity and function. However, the roles ubiquitous factors play in the specification of cell identity remain underappreciated. Here we show that all three subunits of the ubiquitous heterotrimeric CCAAT-binding NF-Y complex are required for the maintenance of embryonic stem cell (ESC) identity, and establish NF-Y as a novel component of the core pluripotency network. Genome-wide occupancy and transcriptomic analyses in ESCs and neurons reveal that not only does NF-Y regulate genes with housekeeping functions through cell type-invariant promoter-proximal binding, but also genes required for cell identity by binding to cell type-specific enhancers with MTFs. Mechanistically, NF-Y's distinctive DNA-binding mode promotes MTF binding at enhancers by facilitating a permissive chromatin conformation. Our studies unearth a novel function for NF-Y in promoting chromatin accessibility, and suggest that other proteins with analogous structural and DNA-binding properties may function in similar ways.

Publication Title

Histone-fold domain protein NF-Y promotes chromatin accessibility for cell type-specific master transcription factors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46493
Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells (Affymetrix)
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The effects of diverse stresses on promoter selectivity and transcription regulation by the tumor suppressor p53 are poorly understood. We have taken a comprehensive approach to characterizing the human p53 network that includes p53 levels, binding, expression and chromatin changes under diverse stresses. Human osteosarcoma U2OS cells treated with anti-cancer drugs Doxorubicin or Nutlin-3 led to strikingly different p53 gene binding patterns based on ChIP-seq experiments. While two contiguous RRRCWWGYYY decamers is the consensus binding motif, p53 can bind a single decamer and function in vivo. Although the number of sites bound by p53 was 6-times greater for Nutlin-3 than Doxorubicin, expression changes induced by Nutlin-3 were much less dramatic compared to Doxorubicin. Unexpectedly, the solvent DMSO alone induced p53 binding to many sites common to Doxorubicin; however, this binding had no effect on target gene expression. Together, these data imply a two-stage mechanism for p53 transactivation where p53 binding only constitutes the first stage. Furthermore, both p53 binding and transactivation were associated with increased active histone modification H3K4me3. We discovered 149 putative new p53 target genes including several that are relevant to tumor suppression, revealing potential new targets for cancer therapy and expanding our understanding of the p53 regulatory network.

Publication Title

Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE65459
Knockdown of TSPAN8 gene expression in the SH-SY5Y neuroblastoma cell line
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Bipolar disorder (BD) has an estimated heritability of about 80%. Different pathways and candidate genes may contribute to the pathogenesis of BD, but definite mechanisms are yet unresolved. In a previous study, we identified the single nucleotide polymorphism (SNP) rs4500567, located in the upstream region of Tetraspanin 8 (TSPAN8), to be associated with bipolar disorder (BD).

Publication Title

The regulation of tetraspanin 8 gene expression-A potential new mechanism in the pathogenesis of bipolar disorder.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact