refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1079 results
Sort by

Filters

Technology

Platform

accession-icon SRP063363
Transcriptomes of peripheral blood mononuclear cells from a Guillain-Barre Syndrome patient and her healthy twin sampled at three different points of the disease evolution
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

Guillain-Barré syndrome (GBS) is an immune-mediated peripheral neuropathy that debilitates the voluntary and autonomous response of the patient. In this study the transcriptome of peripheral blood mononuclear cells from a GBS patient and her healthy twin were compared to discover possible correlates of disease progression and recovery. Overall design: Blood samples were collected simultaneously from the Guillain-Barré patient (A) and from her control healthy twin (B) at three different time points during disease progression from hospitalization in the intensive care unit (T1), passing to intermediate care (T2), and at conclusion of locomotion rehabilitation program when the patient was close to abandon the hospital (T3).

Publication Title

Expression of Early Growth Response Gene-2 and Regulated Cytokines Correlates with Recovery from Guillain-Barré Syndrome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE114707
Expression data from allergic patients to profilin
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Prevalence and severity of allergic diseases have increased worldwide. To date, respiratory allergy phenotypes are not fully characterized and, along with inflammation progression, treatment is increasingly complex and expensive. Profilin sensitization constitutes a good model to study the progression of allergic inflammation.

Publication Title

Multi-omics analysis points to altered platelet functions in severe food-associated respiratory allergy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE147197
Expression data from patients that has received grass pollen sublingual immunotherapy treatment for two years.
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Prevalence and severity of allergic diseases have increased worldwide. To date, respiratory allergy phenotypes are not fully characterized and, in addition, the mechanisms underlying sublingual immunotherapy (SLIT) are still unknown.

Publication Title

Exploring novel systemic biomarker approaches in grass-pollen sublingual immunotherapy using omics.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE53378
Adipose transcriptome and microRNA profiles after surgery-induced weight loss
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Multispecies miRNA-3 Array (mirna3), Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Surgery-Induced Weight Loss Is Associated With the Downregulation of Genes Targeted by MicroRNAs in Adipose Tissue.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE53376
Adipose transcriptome and microRNA profiles after surgery-induced weight loss [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Affymetrix Multispecies miRNA-3 Array (mirna3)

Description

Molecular mechanisms associated with pathophysiological variations in adipose tissue (AT) are not fully recognized. The main aim of this study was to identify novel candidate genes and miRNAs that may contribute to the pathophysiology of hyperplastic AT. Therefore, wide gene and microRNA (miRNA) expression patterns were assessed in subcutaneous AT of 16 morbidly obese women before and after surgery-induced weight loss. Validation of microarray data was performed by quantitative real-time PCR both longitudinally (n=25 paired samples) and cross-sectionally (25 obese vs. 26 age-matched lean women). Analyses in macrophages and differentiated human adipocytes were also performed to try to comprehend the associations found in AT. 5,018 different probe sets identified significant variations in gene expression after treatment (adjusted p-value<0.05). A set of 16 miRNAs also showed significant modifications. Functional analysis revealed changes in genes and miRNAs associated with cell cycle, development and proliferation, lipid metabolism, and the inflammatory response. Canonical affected pathways included TREM1, PI3K, and EIF2 signaling, hepatic stellate cell activation, and mitochondrial function. Increased expression of SLC27A2, ELOVL6, FASN, GYS2, LGALS12, PKP2, ACLY, and miR-575, as well as decreased FOS, EGFL6, PRG4, AQP9, DUSP1, RGS1, EGR1, SPP1, LYZ, miR-130b, miR-221, and miR-155, were further validated. The clustering of similar expression patterns for gene products with related functions revealed molecular footprints, some of them described for the first time, which elucidate changes in biological processes after the surgery-induced weight loss.

Publication Title

Surgery-Induced Weight Loss Is Associated With the Downregulation of Genes Targeted by MicroRNAs in Adipose Tissue.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE12863
An Ets2-specific transcriptional program in tumor-associated macrophages promotes metastasis
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Macrophages have been implicated in breast cancer progression and metastasis, but relatively little is known about the genes and pathways that are involved. Using a conditional allele of Ets2 in the mouse, we have identified Ets2 as a critical gene in tumor associated macrophages (TAMs) that specifically promotes mammary tumor metastasis. Loss of Ets2 in TAMs decreased the frequency and size of lung metastases without impacting primary tumor burden. Expression profiling of isolated tumor macrophages established that Ets2 deficiency resulted in the de-repression of a defined set of anti-angiogenic genes.

Publication Title

An ets2-driven transcriptional program in tumor-associated macrophages promotes tumor metastasis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE77984
SOX17 regulates cholangiocyte differentiation and acts as a tumour suppressor in cholangiocarcinoma
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Background and aims: Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. Incidence is increasing worldwide and these cancers collectively represent the second most common primary liver tumour. CCAs are characterized by genetic and epigenetic alterations that determine their pathogenesis. Hypermethylation of the SOX17 promoter was recently reported in human CCA tumours. SOX17 seems to be a key transcription factor for biliary embryogenesis. Here, we evaluated the role of SOX17 in cholangiocyte differentiation and in cholangiocarcinogenesis. Methods: SOX17 expression and function was evaluated during the differentiation of human induced pluripotent stem cells (iPSC) into cholangiocytes, in the dedifferentiation of normal human cholangiocytes (NHC) and in cholangiocarcinogenesis. Lentiviruses overexpressing or knocking-down SOX17 (Lent-SOX17 and Lent-shRNA-SOX17, respectively) were used. Gene expression arrays were performed. Results: SOX17 expression is highly induced in the later stages of cholangiocyte differentiation from iPSC, and mediates the acquisition of the biliary markers cytokeratin (CK) 7 and 19, as well as fibronectin. In addition, SOX17 becomes progressively downregulated in NHC over serial cell passages in vitro and this event is associated with cellular senescence; however, experimental SOX17 knocking-down in differentiated NHC decreased the expression of both CK7 and 19 without affecting cellular senescence. SOX17 expression is reduced in CCA cells compared to NHC, as well as in human CCA tissue compared to human gallbladder tissue or NHC. In a murine xenograft model, overexpression of SOX17 in CCA cells decreased their tumorigenic capacity related to increased oxidative stress and apoptosis. Interestingly, overexpression of SOX17 in NHC did not affect their survival. Moreover, SOX17 overexpression inhibited the Wnt/-catenin-dependent proliferation in CCA cells and was associated with upregulation of biliary epithelial markers and restoration of the primary cilium length. Both Wnt3a and TGF1 decreased SOX17 expression in NHC in a DNMT1-dependent manner. Inhibition of DNMT1 in CCA cells with siRNAs or pharmacological drugs upregulated SOX17 expression. Conclusion: SOX17 regulates the cholangiocyte phenotype and becomes epigenetically downregulated in CCA. SOX17 acts as a tumour suppressor in CCA, and restoration of its expression may have important therapeutic value.

Publication Title

SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE34392
The alarmin interleukin-33drives protective antiviral CD8+ T cell responses
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Pathogen-associated molecular patterns decisively influence antiviral immune responses, whereas the contribution of endogenous signals of tissue damage, also known as damage-associated molecular patterns or alarmins, remains ill-defined. We show that interleukin-33 (IL-33), an alarmin released from necrotic cells, is necessary for potent CD8+ T cell (CTL) responses to replicating, prototypic RNA and DNA viruses in mice. IL-33 signaled through its receptor on activated CTLs, enhanced clonal expansion in a MyD88-dependent, CTL-intrinsic fashion, determined polyfunctional effector cell differentiation and was necessary for virus control. Moreover, recombinant IL-33 augmented vaccine-induced CTL responses. Radio-resistant cells of the splenic T cell zone produced IL-33, and efficient CTL responses required IL-33 from radio-resistant cells but not from hematopoietic cells. Thus, alarmin release by radio-resistant cells orchestrates protective antiviral CTL responses.

Publication Title

The alarmin interleukin-33 drives protective antiviral CD8⁺ T cell responses.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE78757
Cortical transcriptional changes in a chemically-induced neuronopathic Gaucher disease mouse model
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Great interest has been shown in understanding the pathology of Gaucher disease (GD) due to the recently-discovered genetic relationship with Parkinsons disease. For such studies, suitable animal models of GD are required. Chemical induction of GD by inhibition of acid -glucosidase (GCase) using the irreversible inhibitor, conduritol-B-epoxide (CBE), is particularly attractive, although few systematic studies examining the effect of CBE on development of symptoms associated with neurological forms of GD have been performed. We now demonstrate a correlation between the amount of CBE injected into mice and levels of accumulation of the GD substrates, glucosylceramide and glucosylsphingosine, and show that disease pathology, indicated by altered levels of pathological markers, depends on the dose of CBE and its time of injection. Gene array analysis shows a remarkable similarly in the gene expression profile of CBE-treated mice and a genetic GD mouse model, the Gbaflox/flox;nestin-Cre mouse, with 120 of the 144 genes up-regulated in CBE-treated mice also up regulated in Gbaflox/flox;nestin-Cre mice. Finally, we demonstrate that some aspects neuropathology and some behavioral abnormalities can be arrested upon cessation of CBE treatment during a specific time window. Together, our data demonstrate that injection of mice with CBE provides a rapid and relatively easy way to induce symptoms typical of neuronal forms of GD, which will prove particularly useful when examining the role of specific biochemical pathways in GD pathology, since CBE can be injected into mice defective in components of putative pathological pathways, alleviating the need for time consuming crossing of mice.

Publication Title

Identification of Modifier Genes in a Mouse Model of Gaucher Disease.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE41932
Female Mice Lacking p47phox Have Altered Adipose Tissue Gene Expression and are Protected against High Fat-Induced Obesity and Metabolic Syndrome
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Oxidative stress in adipose tissue and liver has been linked to the development of obesity. NADPH oxidases (NOX) enzymes are a major source of reactive oxygen species (ROS). The current study was designed to determine if NOX2-generated ROS play a role in development of obesity and metabolic syndrome after high fat feeding. Wild type (WT) mice and mice lacking the cytosolic NOX2 activated protein p47phox (P47KO) were fed AIN-93G diets or high fat diets (HFD) containing 45% fat and 0.5% cholesterol for 13 weeks from weaning. Affymetrix array analysis revealed dramatically less expression of mRNA of genes linked to energy metabolism, adipocyte differentiation (PPAR, Runx2) and fatty acid uptake (CD36, lipoprotein lipase) in fat pads from female HFD-P47KO mice compared to HFD-WT females. These data suggest that NOX2 is an important regulator of metabolic homeostasis and that NOX2-associated ROS plays an important role in development of diet-induced obesity particularly in the female

Publication Title

Female mice lacking p47phox have altered adipose tissue gene expression and are protected against high fat-induced obesity.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact