refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 57 results
Sort by

Filters

Technology

Platform

accession-icon GSE4888
Molecular phenotyping of human endometrium
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To examine the possibility that biochemical or molecular signatures of endometrium may prove to be more useful, we have investigated whole genome molecular phenotyping (54,600 genes/ESTs) of this tissue sampled across the cycle in 28 normo-ovulatory women, using high-density oligonucleotide microarrays. The results demonstrate that endometrial samples obtained by two different sampling techniques (biopsy and curetting hysterectomy specimens) from subjects who are as normal as possible in a human study and 4 including those with unknown histology, can be classified by their molecular signatures and correspond to known phases of the menstrual cycle with identical results using two independent analytical methods. Also, the results enable global identification of biological processes and molecular mechanisms that occur dynamically in the endometrium in the changing steroid hormone milieu across the menstrual cycle in normo-ovulatory women. The results underscore the potential of gene expression profiling for developing molecular diagnostics of endometrial normalcy and abnormalities and identifying molecular targets for therapeutic purposes in endometrial disorders.

Publication Title

Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women.

Sample Metadata Fields

Age

View Samples
accession-icon GSE5809
Decidual stromal cell response to paracrine signals from the trophoblast
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

During the invasive phase of implantation, trophoblasts and maternal decidual stromal cells secrete products that regulate trophoblast differentiation and migration into the maternal endometrium. Paracrine interactions between the extravillous trophoblast and the maternal decidua are important for successful embryonic implantation, including establishing the placental vasculature, anchoring the placenta to the uterine wall, and promoting immuno-acceptance of the fetal allograph. Global cross-talk between the trophoblast and the decidua has not been elucidated to date, and the current study used a functional genomics approach to investigate these paracrine interactions.

Publication Title

Decidual stromal cell response to paracrine signals from the trophoblast: amplification of immune and angiogenic modulators.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE56615
Expression data from human breast cancer cells MDA-MB-231-Luc knockdown for RRAS2 expression.
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We used microarrays to investigate gene expression changes induced by the inhibition of RRAS2 expression using shRNA techniques to stably knockdown the endogenous transcripts of this GTPase in human MDA-MB-231-Luc cells.

Publication Title

Contribution of the R-Ras2 GTP-binding protein to primary breast tumorigenesis and late-stage metastatic disease.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE65851
Beta Amyloid toxicity in a Caenorhabditis elegans model of Alzheimer's disease
  • organism-icon Caenorhabditis elegans
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Transgenic animals were engineered to express human amyloid peptide controlled by a muscle-specific, heat-inducible promoter. At low temperatures (16C) Abeta expression is minimal, while at higher temperatures (20-25C) Abeta accummulates in large quantities and causes paralysis.

Publication Title

Identifying Aβ-specific pathogenic mechanisms using a nematode model of Alzheimer's disease.

Sample Metadata Fields

Time

View Samples
accession-icon GSE103615
Genome-wide profiling of genes during differentiation of wild type (WT) murine embryonic stem cells (ESCs), scrambled control (SCR) ESCs and Mageb16-depleted (KD) ESCs
  • organism-icon Mus musculus
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Melanoma-associated Antigen gene family (MAGE) generally encodes for tumour antigens. We recently have identified one of the MAGE gene members, Mageb16 to be highly expressed in undifferentiated murine embryonic stem cells (mESCs). The role of Mageb16 for the differentiation of the pluripotent stem cells is completely unknown. Here we demonstrate that Mageb16 (41 kDa) is distributed in cytosol and/or in surface membrane in undifferentiated mESCs. A transcriptome study was performed with differentiated short hairpin RNA (shRNA)-mediated Mageb16 knockdown (KD ESCs) and scrambled control (SCR) ESCs until a period of 22 days. Mageb16 KD ESCs mainly differentiated towards mesodermal derivatives such as cardiovascular lineages. Mesoderm-oriented differentiation initiated biological processes such as adipogenesis, osteogenesis, limb morphogenesis and spermatogenesis were significantly enriched in the differentiated Mageb16 KD ESCs. Cardiomyogenesis in differentiated KD mESCs was stronger when compared to differentiated SCR and wild mESCs. The expression of non-coding RNA (ncRNA) Lin28a and other epigenetic regulatory genes, nucleocytoplasmic trafficking and genes participating in spermatogenesis have also declined faster in the differentiating Mageb16 KD ESCs. We conclude that Mageb16 plays a crucial role for differentiation of ESCs, specifically to the mesodermal lineages. Regulative epigenetic networks and nucleocytoplasmic modifications induced by Mageb16 may play a role for the critical role of Mageb16 for the ESCs differentiation.

Publication Title

Depletion of Mageb16 induces differentiation of pluripotent stem cells predominantly into mesodermal derivatives.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE78929
Transcriptomic analysis reveals abnormal repair and remodeling in survivors of critical illness with sustained muscle weakness
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

ICU acquired weakness (ICUAW) is a complication of critical illness characterized by structural and functional impairment of skeletal muscle that may persist for years after ICU discharge with many survivors developing protracted courses with few regaining functional independence. Elucidating molecular mechanisms underscoring sustained ICUAW is crucial to understanding outcomes linked to different morbidity trajectories as well as for the development of novel therapies. Quadriceps muscle biopsies and functional measures of muscle strength and mass were obtained at 7 days and 6 months post-ICU discharge from a cohort of ICUAW patients. Unsupervised co-expression network analysis of transcriptomic profiles identified discrete modules of co-expressed genes associated with the degree of muscle weakness and atrophy in early and sustained ICUAW. Modules were enriched for genes involved in skeletal muscle regeneration and extracellular matrix deposition. Collagen deposition in persistent ICUAW was confirmed by histochemical stain. Modules were further validated in an independent cohort of critically ill patients with sepsis-induced multi-organ failure and a porcine model of ICUAW, demonstrating disease-associated conservation across species and peripheral muscle type. Our findings provide a pathomolecular basis for sustained ICUAW, implicating aberrant expression of distinct skeletal muscle structural and regenerative genes in early and persistent ICUAW.

Publication Title

Transcriptomic analysis reveals abnormal muscle repair and remodeling in survivors of critical illness with sustained weakness.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE20472
Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19564
Comparative Analysis of Extraembryonic Endoderm Cells with Cardiac Inducing Ability
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Comparative analysis of Endodermal-like cell lines with demonstrated ability to support myocardial differentiation

Publication Title

A comparative analysis of extra-embryonic endoderm cell lines.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE24133
Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation: Expression data
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Metazoan transcription is controlled through either coordinated recruitment of transcription machinery to the gene promoter, or subsequently, through regulated pausing of RNA polymerase II (Pol II) in early elongation. We report that a key difference between genes that use these distinct regulatory strategies lies in the chromatin architecture specified by their DNA sequences. Pol II pausing is prominent at highly-regulated genes whose sequences inherently disfavor nucleosome formation within the gene, but favor nucleosomal occlusion of the promoter. Pausing of polymerase maintains these genes in an active state by inhibiting the formation of repressive promoter chromatin. In contrast, promoters of housekeeping genes that lack paused Pol II are deprived of nucleosomes regardless of polymerase binding, but show higher nucleosome occupancy downstream. Our results suggest that the default chromatin state of a gene instructs its regulation, and that highly-regulated promoters have evolved to encourage competition between nucleosomes and paused Pol II for promoter occupancy.

Publication Title

Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE50698
DENV1-NS3hell single point mutations enhance viral replication and bypass Type I IFN anti-virus function in human dendritic cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Dengue is one of the most important arboviruses in the world, with 2.5 billion people living in areas under risk to contagious. Mosquitos from Aedes genus is the transmission vector of viral particles.

Publication Title

Single point mutations in the helicase domain of the NS3 protein enhance dengue virus replicative capacity in human monocyte-derived dendritic cells and circumvent the type I interferon response.

Sample Metadata Fields

Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact