refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 68 results
Sort by

Filters

Technology

Platform

accession-icon GSE55967
A superseries of gene expression in early craniofacial development in mouse embryos at stages E8.5, E9,5, and E10.5.
  • organism-icon Mus musculus
  • sample-icon 114 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A gene expression atlas of early craniofacial development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55965
A gene expression atlas of early craniofacial development
  • organism-icon Mus musculus
  • sample-icon 103 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We present a gene expression atlas of early mouse craniofacial development. Laser capture microdissection (LCM) was used to isolate cells from the principal critical micro-regions, whose development, differentiation and signaling interactions are responsible for the construction of the mammalian face.

Publication Title

A gene expression atlas of early craniofacial development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55964
Single cell gene expression of early E8.5 pioneer neural crest cells and paraxial mesoderm
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Laser capture microdissection (LCM) was used to isolate cells from the principal critical micro-regions, whose development, differentiation and signaling interactions are responsible for the construction of the mammalian face. At E8.5, as migrating neural crest cells begin to exit the neural fold/epidermal ectoderm boundary, we examined the facial mesenchyme, composed of neural crest and paraxial mesoderm cells, as well as cells from adjacent neuroepithelium.

Publication Title

A gene expression atlas of early craniofacial development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66107
Everolimus protects podocytes via stabilizing TUBB2B and DCDC2 expression
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Glomerular podocytes are highly differentiated cells that are key components of the kidney filtration units. The podocyte cytoskeleton builds the basis for the dynamic podocyte cytoarchitecture and plays a central role for proper podocyte function. Recent studies implicate that immunosuppressive agents including the mTOR-inhibitor everolimus have a protective role directly on the stability of the podocyte cytoskeleton. To elucidate mechanisms underlying mTOR-inhibitor mediated cytoskeletal rearrangements, we carried out microarray gene expression studies to identify target genes and corresponding pathways in response to everolimus. We analyzed the effect of everolimus in a puromycin aminonucleoside experimental in vitro model of podocyte injury. Upon treatment with puromycin aminonucleoside, microarray analysis revealed gene clusters involving cytoskeletal-associated pathways, adhesion, migration and extracellular matrix composition to be affected. Everolimus is capable of protecting podocytes from injury, both on the transcriptome and protein level. Rescued genes included TUBB2B and DCDC2, both involved in microtubule structure formation in neuronal cells but not identified in podocytes so far. Confirming gene expression data, Western-blot analysis in cultured podocytes showed an increase of TUBB2B and DCDC2 protein after everolimus treatment, and immunohistochemistry in healthy control kidneys confirmed a podocyte-specific expression. Microtubule-inhibitor experiments led to a maldistribution of TUBB2B and DCDC2 as well as an aberrant reorganization of the actin cytoskeleton. Tubb2bbrdp/brdp mice showed a delay in glomerular podocyte and capillary development. Taken together, our study suggests that off-target, non-immune mediated effects of the mTOR-inhibitor everolimus on the podocyte cytoskeleton might involve regulation of microtubules, revealing a potential novel role of TUBB2B and DCDC2 in glomerular podocyte development

Publication Title

Everolimus Stabilizes Podocyte Microtubules via Enhancing TUBB2B and DCDC2 Expression.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE45034
Expression data from mouse ES cells after control RNAi (scramble siRNAs) or RNAi specific for Kdm6a treatment.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To address the functional role of KDM6A in the regulation of Rhox genes, male and female mouse ES cells were transfected with a mixture of three small interfering RNA duplexes, each of which targets a different region of Kdm6a mRNA. We found that Kdm6a knockdown in mouse ES cells caused a decrease in expression of a subset of Rhox genes, Rhox6 and 9. Furthermore, Rhox6 and 9 expression was decreased in female ES cells but not male ES cells indicating that KDM6A regulates Rhox gene expression in a sexually dimorphic manner.

Publication Title

Female bias in Rhox6 and 9 regulation by the histone demethylase KDM6A.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE44252
Expression data from mouse ES cells after control RNAi (scramble siRNAs) or specific RNAi (siRNAs for specific genes) treatment
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To address the functional role of MOF in mammalian X upregulation, male and female mouse ES cells were transfected with a mixture of three small interfering RNA duplexes, each of which targets a different region of Mof mRNA. We found that MOF knockdown in mouse ES cells caused a greater drop in expression of X-linked genes compared to autosomal genes, as measured by expression array analyses. The strongest effect was observed on medium-expressed X-linked genes.

Publication Title

Mammalian X upregulation is associated with enhanced transcription initiation, RNA half-life, and MOF-mediated H4K16 acetylation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE18877
Expression data from human triploid and diploid fibroblast cell cultures
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Dosage compensation restores a balanced network of gene expression between autosomes and sex chromosomes in males (XY) and females (XX). In mammals, this is achieved by doubling the expression of X-linked genes in both sexes, together with X inactivation in females. X up-regulation may be controlled by DNA sequence based and/or epigenetic mechanisms that double the X output potentially in response to an autosomal counting factor. Human triploids with either one or two active X chromosomes (Xa) provide a mean to test X chromosome expression in the presence of three sets of autosomes, which will help understand the underlying mechanisms of X up-regulation.

Publication Title

Dosage regulation of the active X chromosome in human triploid cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE44251
Expression data from undifferentiated and differentiated mouse female ES cells PGK12.1
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Affymetrix 430 2.0 mouse arrays were used for expression analyses in undifferentiated and differentiated PGK12.1 ES cells. We found that the X:autosome expression ratios calculated from the mean expression values of X-linked and autosomal genes from microarrays was ~1.4 in undifferentiated female ES cells and then decreased to 1.2 in PGK12.1 cells after 15-day embryoid body differentiation. Thus, a substantial level of X upregulation is already evident in these ES cells prior to differentiation.

Publication Title

Mammalian X upregulation is associated with enhanced transcription initiation, RNA half-life, and MOF-mediated H4K16 acetylation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP070081
RNA-Seq of SLNCR1 over-expression in the melanoma cell line A375
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconNextSeq500

Description

RNA-Seq was used to profile transcriptional changes induced by overexpression of the long non-coding RNA SLNCR1, as well as mutant version SLNCR1 delta conserved and SLNCR1 conserved. Overall design: The A375 melanoma cell line was transfected with pcDNA3.1 (-) expressing either full length SLNCR1, SLNCR1 delta conserved, or SLNCR1 conserved.

Publication Title

The lncRNA SLNCR1 Mediates Melanoma Invasion through a Conserved SRA1-like Region.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP070082
RNA-Seq of siRNA-mediated knockdown of the lncRNA SLNCR1 in WM1976 melanoma cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconNextSeq500

Description

RNA-Seq was used to profile transcriptional changes induced by siRNA knockdown of the long non-coding RNA SLNCR1. Overall design: The WM1976 melanoma short-term culture was transfected with either scrambled or SLNCR1-targeting siRNAs

Publication Title

The lncRNA SLNCR1 Mediates Melanoma Invasion through a Conserved SRA1-like Region.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact