refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 25 results
Sort by

Filters

Technology

Platform

accession-icon SRP096672
Regulation of mRNA translation and subcellular location controls protein synthesis of key modulators of the DNA damage response during B cell activation [PolyRiboSeq]
  • organism-icon Mus musculus
  • sample-icon 157 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

Post-transcriptional regulation of cellular mRNA is essential for protein synthesis. Here we describe the importance of mRNA translational repression and mRNA subcellular location for protein expression during B lymphocyte activation and the DNA damage response. Cytoplasmic RNA granules are formed upon cell activation with mitogens, including stress granules that contain the RNA binding protein Tia1. Tia1 binds to a subset of transcripts involved in cell stress, including p53 mRNA, and controls translational silencing and RNA granule localization. DNA damage promotes mRNA relocation and translation in part due to dissociation of Tia1 from its mRNA targets. Upon DNA damage, p53 mRNA is released from stress granules and associates with polyribosomes to increase protein synthesis. Global analysis of cellular mRNA abundance and translation indicates that this is an extended ATM-dependent mechanism to increase protein expression of key modulators of the DNA damage response. Overall design: Splenic B cells from C57BL/6Babr mice were isolated and activated with LPS for 48 hours prior induction or not of DNA damage with etoposide. After 4 hours, cells were treated with cycloheximide (100 microgrames per ml) for 3 minutes. Then, cytoplasmic extracts were collected. Polysome fractionation in sucrose gradients (10-50% sucrose) was performed for isolation of mRNA associated to monosomes (fractions 4 to 7), light polysomes (fractions 8 to 10) or heavy polysomes (fractions 11 to 16). The ATM kinase inhibitor KU55933 was added 1 hour prior induction of DNA damage with etoposide.

Publication Title

Tia1 dependent regulation of mRNA subcellular location and translation controls p53 expression in B cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP070761
Late pre-B cell transcriptomes from Zfp36l1 Zfp36l2 double knockout mice [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Purpose: Conditional knockout of Zfp36l1 Zfp36l2 in pro-B cells perturbs B cell development leading to reduced V(D)J recombination and diminished numbers of cells in successive stages of development. This RNA seq experiment aimed to determine the molecular pathways affected by loss of Zfp36l1 and Zfp36l2, and to deduce direct targets of these RNA binding proteins. Methods: RNAseq libraries were prepared from 0.1 µg of RNA from sorted control and DCKO late pre-B cells using TruSeq RNA sample preparation kit v2 modified to be strand specific using the dUTP method. Libraries were sequenced by an Illumina genome analyzer II measuring 54bp single-end reads. Over 30 million reads were measured from each sample. The reads were trimmed to remove adapter sequences using Trim Galore then mapped using Tophat (version 1.1.4) to the NCBIm37 mouse assembly (April 2007, strain C57BL/6J); reads with an identical sequence to more than one genomic locus were not mapped. Quality control analysis was carried out with FastQC. Results: Read counts for each gene were generated in SeqMonk: transcripts from the same gene were collapsed into a single transcript containing all exons, so total reads were counted without considering alternative splice forms. Since the libraries were strand-specific only reads on the opposing strand were counted. Differences in the abundance of transcripts between DCKO and control late pre-B cells were calculated in the R/Bioconductor program DESeq (version 1.12.1). Adjusted P values for differential expression were calculated in DESeq using a Benjamini-Hochberg correction: genes with an adjusted p-value of less than 5% were considered significant. Differentially expressed mouse transcripts identified using DESeq were analyzed for gene set enrichment using Toppfun. Conclusions: We identified an enrichment of mRNAs involved in cell cycle progression within Zfp36l1 Zfp36l2 double conditional knockouts. Overall design: RNAseq of late pre-B cells from control and Zfp36l1, Zfp36l2 double conditional knockout mice.

Publication Title

RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE45044
Age-mediated transcriptomic changes in adult mouse brain ventral tegmental area
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Substantia nigra pars compacta (SNpc) is highly sensitive to normal aging and selectively degenerates in Parkinson's disease. However, ventral tegmental area (VTA), a region adjacent to SNpc, is less affected in PD. Until now, molecular mechanisms behind VTA aging have not been fully investigated using high throughput techniques.

Publication Title

Age-mediated transcriptomic changes in adult mouse substantia nigra.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45043
Age-mediated transcriptomic changes in adult mouse substantia nigra
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Substantia nigra pars compacta (SNpc) is highly sensitive to normal aging and selectively degenerates in Parkinson's disease. Until now, molecular mechanisms behind SNpc aging have not been fully investigated using high throughput techniques.

Publication Title

Age-mediated transcriptomic changes in adult mouse substantia nigra.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45045
Age-mediated transcriptomic changes in adult mouse substantia nigra and ventral tegmental area
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Age-mediated transcriptomic changes in adult mouse substantia nigra.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE94341
Inhibition of the kinesin spindle protein enhances the activity of pomalidomide and dexamethasone in multiple myeloma
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE94336
Inhibition of the kinesin spindle protein enhances the activity of pomalidomide and dexamethasone in multiple myeloma [In Vivo]
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Kinesin spindle protein (KSP) inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (Arry-520), a KSP inhibitor, has demonstrated activity in heavily pretreated multiple myeloma (MM) patients. The aim of this work was to investigate the activity of filanesib in combination with an IMiDs plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. Results: Filanesib showed in vitro and in vivo synergy with all IMiDs plus dexamethasone treatment, particularly with the pomalidomide combination (PDF). Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and it was shown to be mediated by impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, PDF increased the activation of the proapoptotic protein Bax, which has been previously associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Conclusions: Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone and es-tablished the basis for a recently activated trial being conducted by the Spanish MM group investigating this combination in relapsed MM patients.

Publication Title

The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE94334
Inhibition of the kinesin spindle protein enhances the activity of pomalidomide and dexamethasone in multiple myeloma [In Vitro]
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Kinesin spindle protein (KSP) inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (Arry-520), a KSP inhibitor, has demonstrated activity in heavily pretreated multiple myeloma (MM) patients. The aim of this work was to investigate the activity of filanesib in combination with an IMiDs plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. Results: Filanesib showed in vitro and in vivo synergy with all IMiDs plus dexamethasone treatment, particularly with the pomalidomide combination (PDF). Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and it was shown to be mediated by impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, PDF increased the activation of the proapoptotic protein Bax, which has been previously associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Conclusions: Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone and es-tablished the basis for a recently activated trial being conducted by the Spanish MM group investigating this combination in relapsed MM patients.

Publication Title

The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE29145
PKCz-mediated Gaq stimulation of the ERK5 pathway is involved in cardiac hypertrophy
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background: Gq-coupled G protein-coupled receptors (GPCR) mediate the actions of a variety of messengers that are key regulators of cardiovascular function. Enhanced Gaq-mediated signaling plays an important role in cardiac hypertrophy and in the transition to heart failure. We have recently described that Gaq acts as an adaptor protein that facilitates PKCz-mediated activation of ERK5 in epithelial cells. Since the ERK5 cascade is known to be involved in cardiac hypertrophy, we have investigated the potential relevance of this pathway in Gq-dependent signaling in cardiac cells.

Publication Title

Protein kinase C (PKC)ζ-mediated Gαq stimulation of ERK5 protein pathway in cardiomyocytes and cardiac fibroblasts.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE48280
Expression data from inflammatory myopathies
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

MHC-I overexpression in muscle biopsies is a hallmark of inflammatory myopathies.However the mechanisms of MHC-I overexpression in each disease is not well understood. Microarray analysis from MHC-I-microdissected myofibers showed a differential expression signature in each inflammatory myopathy. Innate immunity and IFN-I pathways are upregulated vs healthy controls, specifically in dermatomyositis (DM).

Publication Title

Altered RIG-I/DDX58-mediated innate immunity in dermatomyositis.

Sample Metadata Fields

Specimen part, Disease

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact