refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon GSE58729
The ETS transcription factor Elf5 drives lung metastasis in luminal breast cancer via recruitment of Gr-1+CD11b+ myeloid derived suppressor cells
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE58728
The ETS transcription factor Elf5 drives lung metastasis in luminal breast cancer via recruitment of Gr-1+CD11b+ myeloid derived suppressor cells [chronic]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Elf5 expression in mammary progenitor cells regulates a cell fate decision that establishes the alveolar cell lineage. In luminal breast cancer cells, increased Elf5 expression suppressed estrogen receptor and FoxA1 expression and was implicated in the acquisition of resistance to the cytostatic effects of antiestrogen therapy. We show that in the PyMT model of luminal breast cancer, increased Elf5 expression drives lung metastasis by recruiting myeloid-derived suppressor cells, and that this activity overcomes the epithelializing influence of Elf5. Breast cancer expression signatures identify a similar process in humans, and increased Elf5 immunohistochemical staining predicts poor prognosis in the luminal A subgroup. Thus Elf5 may promote escape from hormonal therapy and drive metastasis in luminal breast cancer.

Publication Title

ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE58726
The ETS transcription factor Elf5 drives lung metastasis in luminal breast cancer via recruitment of Gr-1+CD11b+ myeloid derived suppressor cells [acute]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Elf5 expression in mammary progenitor cells regulates a cell fate decision that establishes the alveolar cell lineage. In luminal breast cancer cells, increased Elf5 expression suppressed estrogen receptor and FoxA1 expression and was implicated in the acquisition of resistance to the cytostatic effects of antiestrogen therapy. We show that in the PyMT model of luminal breast cancer, increased Elf5 expression drives lung metastasis by recruiting myeloid-derived suppressor cells, and that this activity overcomes the epithelializing influence of Elf5. Breast cancer expression signatures identify a similar process in humans, and increased Elf5 immunohistochemical staining predicts poor prognosis in the luminal A subgroup. Thus Elf5 may promote escape from hormonal therapy and drive metastasis in luminal breast cancer.

Publication Title

ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact