refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 434 results
Sort by

Filters

Technology

Platform

accession-icon GSE94357
Properties of STAT1 and IRF1 Enhancers and the Influence of SNPs
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNimblegen human 16MB custom tiling array (HG17) design1, Illumina HumanWG-6 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Properties of STAT1 and IRF1 enhancers and the influence of SNPs.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE67766
Cancer Cells Hijack PRC2 to Modify Multiple Cytokine Pathways
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip, Illumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cancer Cells Hijack PRC2 to Modify Multiple Cytokine Pathways.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE67628
The effect of SUZ12 knockdown on the responsivness of IFNg Stimulated Genes
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina HumanWG-6 v3.0 expression beadchip

Description

We studied the effect of knowking down SUZ12 +/- knowckdown of BRM on the responsivness of IFNg stimulated genes. Cells were transfected with siSZU12+/-siBRM or control siRNA+/-siBRM. Cells were then left untreated or exposed to IFNg for 6 hours.

Publication Title

Cancer Cells Hijack PRC2 to Modify Multiple Cytokine Pathways.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE67626
The effect of BRG1 on the responsivness of IFNg Stimulated Genes
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

We studied the effect of reconstitution of BRG1 in BRG1-deficient cells on the responsivness of IFNg stimulated genes. Cells were infected with control adenovirus or BRG1-encoding virus. Cells were then left untreated or exposed to IFNg for 6 hours.

Publication Title

Cancer Cells Hijack PRC2 to Modify Multiple Cytokine Pathways.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE52777
PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE62500
PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies [expression array]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The polycomb repressive complex 2 (PRC2) exerts oncogenic effects in many tumour types1. However, loss-of-function mutations in PRC2 components occur in a subset of haematopoietic malignancies, sug- gesting that this complex plays a dichotomous and poorly understood role in cancer2,3. Here we provide genomic, cellular, and mouse mod- elling data demonstrating that the polycomb group gene SUZ12 func- tions as tumour suppressor in PNS tumours, high-grade gliomas and melanomas by cooperating with mutations in NF1. NF1 encodes a Ras GTPase-activating protein (RasGAP) and its loss drives cancer by activating Ras4. We show that SUZ12 loss potentiates the effects of NF1 mutations by amplifying Ras-driven transcription through effects on chromatin. Importantly, however, SUZ12 inactivation also triggers an epigenetic switch that sensitizes these cancers to bromodomain inhib- itors. Collectively, these studies not only reveal an unexpected con- nection between the PRC2 complex, NF1 and Ras, but also identify a promising epigenetic-based therapeutic strategy that may be exploited for a variety of cancers.

Publication Title

PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE1834
Temporal analysis of hippocampus in kainate-induced seizures. Koh-7K08NS002068-05-3
  • organism-icon Rattus norvegicus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

Mesial temporal lobe epilepsy (MTLE) is the most common medically refractory epilepsy syndrome; kainic acid (KA) induced seizures have been studied as a MTLE model as limbic seizures produced by systemic injections of KA result in a distinctive pattern of neurodegeneration in the hippocampus that resembles human hippocampal sclerosis. In our "2-hit" seizure model, animals subjected to seizures during week 2 of life become more susceptible to seizures later in life and sustain extensive hippocampal neuronal injury after second KA seizures in adulthood. Using high-density oligonucleotide gene arrays, we began to elucidate the molecular basis of this priming effect of early-life seizures and of the age-specific neuroprotection against seizure-induced neuronal injury. We seek to identify target genes for epileptogenesis and cell death by selecting transcripts that are differentially regulated at various times in the P15 and P30 hippocampus.

Publication Title

Microarray analysis of postictal transcriptional regulation of neuropeptides.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1831
Temporal analysis of P15 hippocampus in kainate-induced seizures. Koh-2K08NS002068-04
  • organism-icon Rattus norvegicus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

Early childhood convulsions have been correlated with hippocampal neuron loss in patients with intractable temporal lobe epilepsy. Using a "two-hit" rat seizure model, we have shown that animals subjected to kainate (KA)- or hypoxia-induced seizures during early postnatal period showed no cell death, yet sustained more extensive neuronal death after second seizures in adulthood. An early life seizure, without causing overt cellular injury, predisposes the brain to the damaging effect of seizures in later life. Cellular and molecular changes that accompany early seizures and that lead to subsequent epileptogenesis and increased susceptibility to seizure-induced neuronal injury, however, remain poorly understood. We propose to investigate age-specific, time-dependent changes in gene expression that may underlie this priming effect of early-life seizures.

Publication Title

Microarray analysis of postictal transcriptional regulation of neuropeptides.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15074
Expression data from Rat heterotopic cardiac transplants
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Heterotopic cardiac transplants were constructed in male Wistar Furth (allograft donor) and ACI (host) rats. Rats were divided into three groups consisting of no treatment, treatment with a sub-therapeutic dose of cyclosporin A, and treated with combination of a sub-therapeutic dose of cyclosporin A and allochimeric peptide. The allografts were harvested at defined periods post-transplantation and RNA was harvested to monitor gene expression changes resulting from the various treatments in T-cells and in heart cells.

Publication Title

Intragraft gene expression profile associated with the induction of tolerance by allochimeric MHC I in the rat heart transplantation model.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE26487
Effects of Glucocorticoids in Epidermal Keratinocytes
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Glucocorticoids (GCs) have a long history of use as therapeutic agents for numerous skin diseases. Surprisingly, their specific molecular effects are largely unknown. To characterize GC action in epidermis, we compared the transcriptional profiles of primary human keratinocytes untreated and treated with dexamethasone (DEX) for 1, 4, 24, 48 and 72 hours using large-scale microarray analyses. The majority of genes were found regulated only after 24 hours and remained regulated throughout the treatment. In addition to expected anti-inflammatory genes, we found that GCs regulate cell fate, tissue remodeling, cell motility, differentiation and metabolism. GCs not only effectively block signaling by TNF-alpha and IL-1 but also by IFN-gamma, which was not previously known. Specifically, GCs suppress the expression of essentially all IFN-gamma-regulated genes, including IFN-gamma receptor and STAT-1. GCs also block STAT-1 activation and nuclear translocation. Unexpectedly, GCs have anti-apoptotic effects in keratinocytes by inducing the expression of anti-apoptotic and repressing pro-apoptotic genes. Consequently, GCs treatment blocked UV-induced apoptosis of keratinocytes. GCs have a profound effect on wound healing by inhibiting cell motility and the expression of pro-angiogenic factor VEGF. They play an important role in tissue remodeling and scar formation by suppressing the expression of TGF-beta-1 and -2, MMP1, 2, 9 and 10 and inducing TIMP-2. Finally, GCs promote terminal stages of epidermal differentiation while simultaneously inhibiting the early stages. These results provide new insights into the beneficial and adverse effects of GCs in epidermis, defining the participating genes and mechanisms that coordinate the cellular responses important for GC-based therapies.

Publication Title

Novel genomic effects of glucocorticoids in epidermal keratinocytes: inhibition of apoptosis, interferon-gamma pathway, and wound healing along with promotion of terminal differentiation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact