refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 391 results
Sort by

Filters

Technology

Platform

accession-icon SRP131324
Transcriptome profiling of HepG2 cells upon treatment of the menin-MLL inhibitor MI-503 or DMSO
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Hepatocellular carcinoma (HCC) accounts for the majority of malignant liver tumors and results in many deaths each year, emphasizing the need for new therapies. The protein-protein interaction between menin and histone methyltransferase Mixed Lineage Leukemia 1 (MLL1) plays an important role in the development of HCC, implying that pharmacologic inhibition of this interaction could lead to new therapeutic strategy for the HCC patients. Therefore, we performed RNA sequencing experiment to determine the transcriptome change in the HepG2 cells upon treatment of MI-503, a small molecule inhibitor of the menin-MLL1 interaction with optimized drug-like properties Overall design: HepG2 cells were plated in the 12-well plates at the initial concentration of 0.4x106 cells/ml and treated with 3 µM MI-503 or DMSO (0.25%) in triplicates. After 3 days of treatment viable cell number was adjusted to the original concentration in the DMSO treated samples and the same dilution factor was used to adjust cell number in the MI-503 treated cells. Media was changed and compound or DMSO was re-supplied at that time. Cells were harvested after 3 more days of incubation.

Publication Title

Pharmacologic Inhibition of the Menin-MLL Interaction Leads to Transcriptional Repression of <i>PEG10</i> and Blocks Hepatocellular Carcinoma.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon SRP068907
mRNA-seq of nuclear RNA extracted from T4 and T5 neurons of D. melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

T4 and T5 neurons are components of the neuronal circuit for motion vision in flies. To identify genes involved in neuronal computation of T4 and T5 neurons, we perfomed transcriptome analysis. Nuclei of T4 and T5 neurons were immunoprecipitated, total RNA was harvested and used for mRNA-seq with Illumina technology. In two biological replicates, we mapped 154 and 119 million reads to D. melanogaster genome. mRNA-seq provided information about expression levels of 17,468 annotated transcripts in the T4 and T5 neurons. Overall design: Cell type – specific transcriptome analysis of the RNA isolated from immunoprecipitated nuclei, performed in two biological replicates

Publication Title

RNA-Seq Transcriptome Analysis of Direction-Selective T4/T5 Neurons in Drosophila.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE76699
A serial screen for roadblocks to reprogramming identifies the sumoylation effector protein Sumo2
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The generation of induced pluripotent stem cells (iPSCs) from differentiated cells following forced expression of Oct4, Klf4, Sox2 and c-Myc (OKSM) is slow and inefficient, suggesting that transcription factors have to overcome somatic barriers that resist cell fate change. Here, we performed an ubiased serial shRNA enrichment screen to identify novel repressors of somatic cell reprogramming into iPSCs. This effort uncovered the sumoylation effector protein Sumo2 as one of the strongest roadblocks to iPSC formation. Depletion of Sumo2 both enhances and accelerates reprogramming, yielding transgene-independent, chimera-competent iPSCs after as little as 36 hours of OKSM expression. We further show that the Sumo2 pathway acts independently of exogenous c-Myc expression and in parallel with small molecule enhancers of reprogramming. Critically, suppression of SUMO2 also promotes the generation of human iPSCs. Together, our results reveal sumoylation as a crucial post-transcriptional mechanism that resists the acquisition of pluripotency from fibroblasts using defined factors.

Publication Title

A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE18113
Expression data from Human MicroVascular Endothelial Cells (HMVECS)
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The activation of endothelium by tumor cells is one of the main steps by tumor metastasis. The role of the blood components (platelets and leukocytes) in this process remain unclear.

Publication Title

Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60673
Pharmacologic inhibition of the menin-MLL interaction blocks progression of MLL leukemia in vivo
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Chromosomal translocations affecting Mixed Lineage Leukemia (MLL) gene result in acute leukemias resistant to therapy. The leukemogenic activity of MLL fusion proteins is dependent on their interaction with menin, providing basis for therapeutic intervention. Here we report development of novel, highly potent and orally bioavailable small molecule inhibitors of the menin-MLL interaction, MI-463 and MI-503, show their profound effects in MLL leukemia cells and substantial survival benefit in mice models of MLL leukemia. Finally, we demonstrate efficacy of these compounds in primary samples derived from MLL leukemia patients. Overall, we demonstrate for the first time that pharmacologic inhibition of the menin-MLL interaction represents an effective treatment for MLL leukemias in vivo and provide advanced molecular scaffold for clinical lead identification.

Publication Title

Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE9000
Effect of HDAC inhibitors on expression of androgen induced genes
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Elevated levels of androgen receptor (AR) in prostate cancer confer resistance to current antiandrogens and play a causal role in disease progression due to persistent target gene activation. Through pharmacologic and genetic approaches, we show that half of all direct AR target genes, including TMPRSS2, the primary driver of ETS fusion transcripts in 70 percent of human prostate cancers, require histone deacetylase (HDAC) activity for transcriptional activation by AR. Surprisingly, the HDAC3-NCoR complex, which typically functions to repress gene expression by nuclear receptors, is required for AR target gene activation. Prostate cancer cells treated with HDAC inhibitors have reduced AR protein levels, but we show that the mechanism of blockade of AR activity is through failure to assemble a coactivator/RNA polymerase II complex after AR binds to the enhancers of target genes. Failed complex assembly is associated with a phase shift in the cyclical wave of AR recruitment that typically occurs in response to ligand treatment. HDAC inhibitors retain the ability to block AR activity in hormone refractory prostate cancer models and therefore merit clinical investigation in this setting. HDAC-regulated AR target genes defined here can serve as biomarkers to ensure sufficient levels of HDAC inhibition.

Publication Title

Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12438
Effect of individual HDAC knockdown on expression of androgen induced genes
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Elevated levels of androgen receptor (AR) in prostate cancer confer resistance to current antiandrogens and play a causal role in disease progression due to persistent target gene activation. Through pharmacologic and genetic approaches, we show that half of all direct AR target genes, including TMPRSS2, the primary driver of ETS fusion transcripts in 70 percent of human prostate cancers, require histone deacetylase (HDAC) activity for transcriptional activation by AR. Surprisingly, the HDAC3-NCoR complex, which typically functions to repress gene expression by nuclear receptors, is required for AR target gene activation. Prostate cancer cells treated with HDAC inhibitors have reduced AR protein levels, but we show that the mechanism of blockade of AR activity is through failure to assemble a coactivator/RNA polymerase II complex after AR binds to the enhancers of target genes. Failed complex assembly is associated with a phase shift in the cyclical wave of AR recruitment that typically occurs in response to ligand treatment. HDAC inhibitors retain the ability to block AR activity in hormone refractory prostate cancer models and therefore merit clinical investigation in this setting. HDAC-regulated AR target genes defined here can serve as biomarkers to ensure sufficient levels of HDAC inhibition.

Publication Title

Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP058071
ABCC5 functions as a transporter of glutamate conjugates and analogs
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The ubiquitous efflux transporter ATP-binding cassette sub-family C member 5 (ABCC5) is present at high levels in the blood-brain barrier, neurons and glia, but its in vivo substrates and function are not known. Untargeted metabolomic screens revealed that Abcc5-/- mice accumulate endogenous glutamate conjugates and analogs in several tissues, but brain in particular. The abundant neurotransmitter N-acetylaspartylglutamate (NAAG), for example, was over 2-fold higher in Abcc5-/- brain. In line with ABCC5-mediated transport, the metabolites that accumulated in Abcc5-/- tissues were depleted in cultured cells that overexpressed human ABCC5. Using membrane vesicles, we show that ABCC5 not only transports the metabolites detected in our screen, but also a wide range of peptides containing a C-terminal glutamate. Glutamate conjugates are of physiological relevance because they can affect the function of glutamate, the principal excitatory neurotransmitter in the brain. We found that ABCC5 also transports exogenous glutamate analogs, like the classic excitotoxic neurotoxins kainic acid, domoic acid and N-methyl-D-aspartate (NMDA) and the therapeutic glutamate analog ZJ43. Taken together, we have identified ABCC5 as a general glutamate conjugate and analog transporter that affects the disposition of endogenous metabolites, toxins and drugs. Overall design: A set of 5 wildtype brains was compared to a set of 5 Abcc5-knockout mouse brains

Publication Title

ATP-binding Cassette Subfamily C Member 5 (ABCC5) Functions as an Efflux Transporter of Glutamate Conjugates and Analogs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64689
Histone deacetylase inhibitors cause the selective depletion of bromodomain containing proteins
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Histone deacetylases (HDACs) and acetyltransferases control the epigenetic regulation of gene expression through modification of histone marks. Histone deacetylase inhibitors (HDACi) are small molecules that interfere with histone tail modification thus altering chromatin structure and epigenetically controlled pathways. They promote apoptosis in proliferating cells and are promising anti-cancer drugs. While some HDACis have already been approved for therapy and others are in different phases of clinical trials, the exact mechanism of action of this drug class remains elusive. Previous studies have shown that HDACis cause massive changes in chromatin structure but only moderate changes in gene expression. To which extent these changes manifest at the protein level has never been investigated on a proteome-wide scale. Here, we have studied HDACi-treated cells by large-scale mass spectrometry based proteomics. We show that HDACi treatment affects primarily the nuclear proteome and induces a selective decrease of bromodomain containing proteins (BCPs), the main readers of acetylated histone marks. By combining time-resolved proteome and transcriptome profiling, we show that BCPs are affected at the protein level as early as 12 hours after HDACi treatment and that their abundance is regulated by a combination of transcriptional and post-transcriptional mechanisms. Using gene silencing, we demonstrate that the decreased abundance of BCPs is sufficient to mediate important transcriptional changes induced by HDACi. Our data reveals a new aspect of the mechanism of action of HDACi that is mediated by an interplay between histone acetylation and the abundance of BCPs.

Publication Title

Histone Deacetylase Inhibitors (HDACi) Cause the Selective Depletion of Bromodomain Containing Proteins (BCPs).

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon SRP071939
RNA-seq analysis of growth factor response of NHEKs to antimicrobial petide LL-37 and dsRNA mimic Poly(I:C)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In this study, we analyzed how non-coding double stranded RNA (dsRNAs) act as a damage associated molecular pattern (DAMP) in the skin, and how the human cathelicidin AMP LL-37 might influence growth factor production in response to this DAMP. Overall design: Each sample''s RNA was isolated form a single biological source of P6 NHEKs. In total there are 4 samples (non-replicates); Control (PBS treated), 1.75uM LL-37 treated, 0.1ug/ml Poly(I:C) treated, and co-treated with 1.75uM LL-37 and 0.1ug/ml Poly(I:C).

Publication Title

Non-coding Double-stranded RNA and Antimicrobial Peptide LL-37 Induce Growth Factor Expression from Keratinocytes and Endothelial Cells.

Sample Metadata Fields

Cell line, Treatment, Subject, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact