refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1395 results
Sort by

Filters

Technology

Platform

accession-icon GSE59219
Intrinsic self-DNA triggers inflammatory disease dependent on STING
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Intrinsic self-DNA triggers inflammatory disease dependent on STING.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE59217
Intrinsic self-DNA triggers inflammatory disease dependent on STING (I)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Inflammatory diseases such as Aicardi-Goutieres Syndrome (AGS) and severe systemic lupus erythematosus (SLE) are generally lethal disorders that have been traced to defects in the exonuclease Trex1 (DNAseIII). Mice lacking Trex1 similarly die at an early age through comparable symptoms, including inflammatory myocarditis, through chronic activation of the STING (stimulator of interferon genes) pathway. Here we demonstrate that phagocytes rather than myocytes are predominantly responsible for causing inflammation, an outcome that could be alleviated following adoptive transfer of normal bone marrow into Trex1-/- mice. Trex1-/- macrophages did not exhibit significant augmented ability to produce pro-inflammatory cytokines compared to normal macrophages following exposure to STING-dependent activators, but rather appeared chronically stimulated by genomic DNA. These results shed molecular insight into inflammation and provide concepts for the design of new therapies.

Publication Title

Intrinsic self-DNA triggers inflammatory disease dependent on STING.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE51199
Cyclic-Di-Nucleotides Trigger ULK1 (ATG1) Phosphorylation of STING to Prevent Sustained Innate Immune Signaling
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Activation of the STING (Stimulator of Interferon Genes) pathway by microbial or self-DNA, as well as cyclic di nucleotides (CDN), results in the induction of numerous genes that suppress pathogen replication and facilitate adaptive immunity. However, sustained gene transcription is rigidly prevented to avoid lethal STING-dependent pro-inflammatory disease by mechanisms that remain unknown. We demonstrate here that after autophagy-dependent STING delivery of TBK1 (TANK-binding kinase 1) to endosomal/lysosomal compartments and activation of transcription factors IRF3 (interferon regulatory factors 3) and NF-B (nuclear factor kappa beta), that STING is subsequently phosphorylated by serine/threonine UNC-51-like kinase (ULK1/ATG1) and IRF3 function is suppressed. ULK1 activation occurred following disassociation from its repressor adenine monophosphate activated protein kinase (AMPK), and was elicited by CDNS generated by the cGAMP synthase, cGAS. Thus, while CDNs may initially facilitate STING function, they subsequently trigger negative-feedback control of STING activity, thus preventing the persistent transcription of innate immune genes.

Publication Title

Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE59218
Intrinsic self-DNA triggers inflammatory disease dependent on STING (II)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Inflammatory diseases such as Aicardi-Goutieres Syndrome (AGS) and severe systemic lupus erythematosus (SLE) are generally lethal disorders that have been traced to defects in the exonuclease Trex1 (DNAseIII). Mice lacking Trex1 similarly die at an early age through comparable symptoms, including inflammatory myocarditis, through chronic activation of the STING (stimulator of interferon genes) pathway. Here we demonstrate that phagocytes rather than myocytes are predominantly responsible for causing inflammation, an outcome that could be alleviated following adoptive transfer of normal bone marrow into Trex1-/- mice. Trex1-/- macrophages did not exhibit significant augmented ability to produce pro-inflammatory cytokines compared to normal macrophages following exposure to STING-dependent activators, but rather appeared chronically stimulated by genomic DNA. These results shed molecular insight into inflammation and provide concepts for the design of new therapies.

Publication Title

Intrinsic self-DNA triggers inflammatory disease dependent on STING.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE147197
Expression data from patients that has received grass pollen sublingual immunotherapy treatment for two years.
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Prevalence and severity of allergic diseases have increased worldwide. To date, respiratory allergy phenotypes are not fully characterized and, in addition, the mechanisms underlying sublingual immunotherapy (SLIT) are still unknown.

Publication Title

Exploring novel systemic biomarker approaches in grass-pollen sublingual immunotherapy using omics.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE107811
STING-Dependent Signaling Manifests IL-10 Controlled Inflammatory Colitis
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

STING-Dependent Signaling Underlies IL-10 Controlled Inflammatory Colitis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE107810
Gene expression in the colon from IL10 KO mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

That commensal bacteria can influence intestinal inflammation has been observed using other models of chronic colitis. Loss of IL-10, a major immunosuppressive cytokine, induces spontaneous colitis in mice. The incidence of spontaneous polyp formation in IL-10-deficient mice was also completely eliminated in the absence of STING

Publication Title

STING-Dependent Signaling Underlies IL-10 Controlled Inflammatory Colitis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE107809
Gene expression in murine embryonic fibroblasts stimulated with DNA or LPS
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

MyD88 may play a direct role in STING-dependent signaling, or alternatively that STING-dependent pro-inflammatory cytokines may require downstream MyD88-dependent signaling to exert their effect.

Publication Title

STING-Dependent Signaling Underlies IL-10 Controlled Inflammatory Colitis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE2248
Human Mesenchymal stem cell
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Comparisons of expression profils of human undiferentiated ES cells and Mesenchymal ES cells

Publication Title

Derivation of multipotent mesenchymal precursors from human embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52896
Human mesenchymal stromal cell expansion in a 3D scaffold-based system under direct perfusion
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Development of systems allowing the maintenance of native properties of mesenchymal stromal cells (MSC) is a critical challenge for studying physiological functions of skeletal progenitors, as well as towards cellular therapy and regenerative medicine applications. Conventional stem cell culture in monolayer on plastic dishes (2D) is associated with progressive loss of functionality, likely due to the absence of a biomimetic microenvironment and the selection of adherent populations. Here we demonstrate that 2D MSC expansion can be entirely bypassed by culturing freshly isolated bone marrow cells within the pores of 3D scaffolds in a perfusion-based bioreactor system, followed by enzymatic digestion for cell retrieval. The 3D-perfusion system supported MSC growth while maintaining cells of the hematopoietic lineage, and thus generated a cellular environment mimicking some features of the bone marrow stroma. As compared to 2D-expansion, sorted CD45- cells derived from 3D-perfusion culture after the same time (3 weeks) or a similar extent of proliferation (7-8 doublings) maintained a 4.3-fold higher clonogenicity and exhibited a superior differentiation capacity towards all typical mesenchymal lineages, with similar immunomodulatory function in vitro. Transcriptomic analysis performed on MSC from 5 donors validated the robustness of the process and indicated a reduced inter-donor variability as well as a significant upregulation of multipotency-related gene clusters following 3D-perfusion as compared to 2D expansion. The described system offers a model to study how factors of a 3D engineered niche may regulate MSC function and, by streamlining conventional labor-intensive processes, is prone to automation and scalability within closed bioreactor systems.

Publication Title

Expansion of human mesenchymal stromal cells from fresh bone marrow in a 3D scaffold-based system under direct perfusion.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact