refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon GSE23986
Dengue virus type-3 isolated from a fatal case with visceral complications induces potent inflammatory responses associated with apoptosis in human monocyte-derived dendritic cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Dengue virus (DENV) infection is one of the most serious public health problems worldwide. A recent dengue outbreak in Paraguay (2007-2009) presented unusual manifestations such as hepatitis, encephalitis, pulmonary as well as cardiac disorders associated with 50% of deaths caused by dengue in the country. Despite the knowledge on inflammatory responses observed during the course of disease, the role of innate immune cells in the control of virus replication influencing clinical outcome is poorly defined. Using two clinical isolates of the virus, a non-fatal case of classical DF (DENV3/290) and a fatal case of DF with visceral complications (DENV3/5532), we sought to determine the profile of dengue infection in human dendritic cell, a major innate immune cell population. Compared to classical DENV3/290, the strain DENV3/5532 displayed higher replicative ability in mdDCs. In addition, DENV3/5532 was found to induce elevated production of pro-inflammatory cytokines associated with higher rates of programmed cell death. The observed phenotype was due to viral replication in mdDCs and TNF appeared to display a protective effect on virus-induced mdDCs apoptosis. These results suggest that the fatal case DENV3/5532 isolate modulates dendritic cell survival as well as inflammatory mediators synthesis.

Publication Title

Dengue virus type 3 isolated from a fatal case with visceral complications induces enhanced proinflammatory responses and apoptosis of human dendritic cells.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP185583
Vasculature-associated fat macrophages readily adapt to inflammatory and metabolic challenges
  • organism-icon Mus musculus
  • sample-icon 152 Downloadable Samples
  • Technology Badge IconNextSeq 500, Illumina HiSeq 2500

Description

We show that the epididymal white adipose tissue harbors 4 subpopulations of macrophages (VAM1, VAM2, PreVAM and DPs), 2 subpopulations of Dendritic Cells (CD11B+CD103- and CD11B-CD103+) and monocytes. VAMs display a gene signature enriched in pathways related to anti-inflammatory/ detoxifying and repair processes. Our gene expression work shows no evidence of an M2 to a Classically Activated/M1 shift during diet-induced obesity (DIO). Gene expression of VAMs or DP macrophages cannot be defined as M1 or M1-like. Our data are more compatible with the category of “Metabolically-activated” macrophages (MMe) Overall design: Examination of RNA expression changes in different epididymal adipose tissue myeloid subpopulations in lean versus obese animals harboring metabolic syndrome

Publication Title

Vasculature-associated fat macrophages readily adapt to inflammatory and metabolic challenges.

Sample Metadata Fields

Cell line, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact