refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 38 results
Sort by

Filters

Technology

Platform

accession-icon GSE19534
Alpha-synuclein deficiency affects brain Foxp1 expression and ultrasonic vocalization
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Alpha-synuclein is an abundant protein implicated in synaptic function and plasticity, but the molecular mechanism of its action is not understood. Missense mutations and gene duplication/triplication events result in Parkinson's disease, a neurodegenerative disorder of old age with impaired movement and emotion control. Here, we systematically investigated the striatal as well as the cerebellar transcriptome profile of alpha-synuclein-deficient mice via a genome-wide microarray survey in order to gain hypothesis-free molecular insights into the physiological function of alpha-synuclein. A genotype-dependent, specific and strong downregulation of forkhead box P1 (Foxp1) transcript levels was observed in all brain regions from postnatal age until old age and could be validated by qPCR. In view of the co-localization and heterodimer formation of FOXP1 with FOXP2, a transcription factor with a well established role for vocalization, and the reported regulation of both alpha-synuclein and FOXP2 expression during avian song learning, we performed a detailed assessment of mouse movements and vocalizations in the postnatal period. While there was no difference in isolation-induced behavioral activity in these animals, the alpha-synuclein-deficient mice exhibited an increased production of isolation-induced ultrasonic vocalizations (USVs). This phenotype might also reflect the reduced expression of the anxiety-related GABA-A receptor subunit gamma 2 (Gabrg2) we observed. Taken together, we identified an early behavioral consequence of alpha-synuclein deficiency and accompanying molecular changes, which supports the notion that the neural connectivity of sound or emotion control systems is affected.

Publication Title

Alpha-synuclein deficiency affects brain Foxp1 expression and ultrasonic vocalization.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE60413
Parkinson Phenotype in Aged PINK1-Deficient Mice Is Accompanied by Progressive Mitochondrial Dysfunction in Absence of Neurodegeneration
  • organism-icon Mus musculus
  • sample-icon 88 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Parkinson's disease (PD) is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1) cause the recessive PARK6 variant of PD. Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of -synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. Thus, aging Pink1/ mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death. Transcriptome microarray data of Pink1-/- mouse brains in absence of a stressor, even at old age, show remarkably sparse dysregulations. See Gispert-S et al 2009 PLOS ONE.

Publication Title

Potentiation of neurotoxicity in double-mutant mice with Pink1 ablation and A53T-SNCA overexpression.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE55177
Ataxin-2 adapts ribosomal mRNA levels and S6 phosphorylation to nutrient availability, with effects on protein synthesis and growth
  • organism-icon Mus musculus
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disorder, which is caused by an unstable CAG-repeat expansion in the SCA2 gene, that encodes a polyglutamine tract (polyQ-tract) expansion in ataxin-2 protein (ATXN2). The RNA-binding protein ATXN2 interacts with the poly(A)-binding protein PABPC1, localizing to ribosomes at the rough endoplasmic reticulum or to polysomes. Under cell stress ATXN2 and PABPC1 show redistribution to stress granules where mRNAs are kept away from translation and from degradation. It is unknown whether ATXN2 associates preferentially with specific mRNAs or how it modulates their processing. Here, we investigated Atxn2 knock-out (Atxn2-/-) mouse liver, cerebellum and midbrain regarding their RNA profile, employing oligonucleotide microarrays for screening and RNA deep sequencing for validation. Modest ~1.4-fold upregulations were observed for the level of many mRNAs encoding ribosomal proteins and other translation pathway factors. Quantitative reverse transcriptase PCR and immunoblots in liver tissue confirmed these effects and demonstrated an inverse correlation also with PABPC1 mRNA and protein. ATXN2 deficiency also enhanced phosphorylation of the ribosomal protein S6, while impairing the global protein synthesis rate, suggesting a block between the enhanced translation drive and the impaired execution. Furthermore, ATXN2 overexpression and deficiency retarded cell cycle progression. ATXN2 mRNA levels showed a delayed phasic twofold increase under amino acid and serum starvation, similar to ATXN3, but different from motor neuron disease genes MAPT and SQSTM1. ATXN2 mRNA levels depended particularly on mTOR signalling. Altogether the data implicate ATXN2 in the adaptation of mRNA translation and cell growth to nutrient availability and stress.

Publication Title

Genetic ablation of ataxin-2 increases several global translation factors in their transcript abundance but decreases translation rate.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE7879
Comparison of gene expression data between undifferentiated hES cells and MSC-derived hES cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of genes that were differentially expressed in MSC-derived hES cells (VUB01 and SA01) as compared to VUB01 and SA01 undifferentiated hES cells

Publication Title

Combined mRNA and microRNA profiling reveals that miR-148a and miR-20b control human mesenchymal stem cell phenotype via EPAS1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-1028
Transcription profiling by array of CIC-2 knock out mice
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

ClC-2 is a broadly expressed Cl- channel of the CLC family of Cl- channels and transporters which is abundantly expressed in brain. Here it was proposed to participate in lowering the cytoplasmic Cl- concentration of neurons, a process that establishes an inhibitory response to the neurotransmitters GABA and glycine (Staley et al., 1996). Heterozygous mutations in CLCN2 (the gene encoding ClC-2) were recently reported in a few patients with three clinically distinct forms of epilepsy (Haug et al, 2003). However, the disruption of ClC-2 in mice (ClC-2 KO mouse) did not entail epilepsy (Bösl et al., 2001; Nehrke et al., 2002) but myelin vacuolation in fiber tracts of the central nervous system. We used a gene expression profiling of the ClC-2 KO mouse in brain to identify possible disease mechanism which cause the observed myelin phenotype. As these myelin vacuolation became apparent in the fiber tracts of ClC-2 KO cerebellum at P28 and increased with age, we analysed the cerebellum of ClC-2 KO mice at different postnatal ages, before (P14) and after (P35) the KO cerebellum has been affected by myelin vacuolation.

Publication Title

Leukoencephalopathy upon disruption of the chloride channel ClC-2.

Sample Metadata Fields

Sex, Age, Specimen part, Subject, Time

View Samples
accession-icon GSE26787
Comparison of endometrial expression in patients which underwent previous recurrent abortions, implantation failure after IVF/ICSI compared to control fertile
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In order to identify pre-conceptional endometrial dysregulations, we compared the endometrial expression between fertile and IF and RM patients

Publication Title

Specific and extensive endometrial deregulation is present before conception in IVF/ICSI repeated implantation failures (IF) or recurrent miscarriages.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE64535
Gene expression profiles after induced Id3 levels in A431 squamous carcinoma cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Previously it has been shown that Id3 can act as an apoptosis-inducer gene in immortalized human keratinocytes. To further investigate the role of Id3 in the progression of skin cancer, the role of Id3 in A431 cells is investigated through ectopic induction of Id3.

Publication Title

Id3 induces an Elk-1-caspase-8-dependent apoptotic pathway in squamous carcinoma cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE72140
Transcriptional profiling shows altered expression of wnt pathway- and lipid metabolism-related genes as well as melanogenesis-related genes in melasma.
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Melasma is a commonly acquired hyperpigmentary disorder of the face, but its pathogenesis is poorly understood and its treatment remains challenging. We conducted a comparative histological study on lesional and perilesional normal skin to clarify the histological nature of melasma. Significantly, higher amounts of melanin and of melanogenesis-associated proteins were observed in the epidermis of lesional skin, and the mRNA level of tyrosinase-related protein 1 was higher in lesional skin, indicating regulation at the mRNA level. However, melanocyte numbers were comparable between lesional and perilesional skin. A transcriptomic study was undertaken to identify genes involved in the pathology of melasma. A total of 279 genes were found to be differentially expressed in lesional and perilesional skin. As was expected, the mRNA levels of a number of known melanogenesis-associated genes, such as tyrosinase, were found to be elevated in lesional skin. Bioinformatics analysis revealed that the most lipid metabolism-associated genes were downregulated in lesional skin, and this finding was supported by an impaired barrier function in melasma. Interestingly, a subset of Wnt signaling modulators, including Wnt inhibitory factor 1, secreted frizzled-related protein 2, and Wnt5a, were also found to be upregulated in lesional skin. Immunohistochemistry confirmed the higher expression of these factors in melasma lesions.

Publication Title

Transcriptional profiling shows altered expression of wnt pathway- and lipid metabolism-related genes as well as melanogenesis-related genes in melasma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP068773
EPCR Expression Defines the Most Primitive Subset of Human HSPC and Is Required for Their In Vivo Activity
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Cell purification technology combined with whole transcriptome sequencing and small molecule agonist of hematopoietic stem cell self-renewal has allowed us to identify the endothelial protein c receptor protein (EPCR) as a surface maker that defines a rare subpopulation of human cells which is highly enriched for stem cell activity in vivo. EPCR-positive cells exhibit a robust multi-lineage differentiation potential and serial reconstitution in immunocompromised mice. In culture, most if not all of the HSC activity is detected in the EPCR+ subset, arguing for the stability of this marker on the surface of cultured cells, a feature not found with more recently described markers such as CD49f. Functionally EPCR is essential for human HSC activity in vivo. Cells engineered to express low EPCR expression proliferate normally in culture but lack the ability to confer long-term reconstitution. EPCR is thus a stable marker for human HSC. Its exploitation should open new possibilities in our effort to understand the molecular bases behind HSC self-renewal. Overall design: Examining 3 cellular subsets: EPCR+, EPCRlow, EPCR- derived form CD34+CD45RA- cord blood cells after 7 day expansion in UM171

Publication Title

EPCR expression marks UM171-expanded CD34<sup>+</sup> cord blood stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12131
Transcriptome of Bacillus anthracis lethal toxin (LT)-intoxicated HUVECs monolayers
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have analyzed the variation of transcriptome of HUVECs intoxicated by the lethal toxin of Bacillus anthracis at 4 and 8 hours

Publication Title

Transcriptome dysregulation by anthrax lethal toxin plays a key role in induction of human endothelial cell cytotoxicity.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact